Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 103(3): 1069-1076, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35152422

ABSTRACT

BACKGROUND: Deinking is an important part of paper recycling that involves the removal of ink particles from the paper fibres. This industrial process is important so that the fibres can be recirculated back into paper production, which enables better sustainability as fewer fresh fibres are needed. In this study, we examined five different alternative fibre materials from different agricultural residues and industrial processes for the pilot production of papers. Papers containing fibres from invasive plants (Japanese knotweed), dedicated crops (miscanthus, acacia), agricultural residues (tomato stems), and industrial waste (jute - fibres from coffee bags) were printed with water-based flexo inks and deinked with two separate processes (chemical and enzymes). Mechanical (break and tensile index, breaking length) and optical properties (ISO whiteness, brightness and CIE L*a*b* values) were measured and ink elimination IR700 and deinking efficiency was calculated for the two deinking processes. RESULTS: Enzymatic treatment improved the mechanical properties of deinked pulp in comparison with the classic chemical treatment. Mechanical strength for almost all papers increased slightly (breaking length up to 20% in tomato and jute), and the optical result (brightness) increased similarly for both processes due to the bleaching action of the colour-shaded samples, whereas the deinking efficiency showed mixed results between chemical- and enzyme-type deinking (with chemical achieving better elimination measured at 700 nm) in the typical range of ink elimination values (15-35%) for flexographic inks. This indicates further optimization of the deinking with enzymes is needed due to different alternative fibre compositions and variations of residues in the delignification processes. CONCLUSION: Using a combination of adjusted enzymatic treatment as a precursor for deinking of paper-based packaging materials sourced from alternative fibres showed promising results regarding mechanical properties, whereas the optical properties need to be improved with cellulase optimization or by using mixes of different enzymes. These kinds of paper materials printed with flexo inks were found to be successfully deinkable with the chemical ISO-based deinking protocol. © 2022 Society of Chemical Industry.


Subject(s)
Cellulase , Industrial Waste , Paper , Cellulase/chemistry , Ink , Recycling/methods
2.
Foods ; 11(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36140867

ABSTRACT

Pomegranate fruit is an ancient fruit that is used not only because of its deep-red color and tasty arils but also due to the health benefits of its extracts. Pomegranate is a valuable source of bioactive compounds, including colorful anthocyanins and other polyphenols. The main objective of the present study was to gain comprehensive knowledge of the phenolic composition and antioxidative activity of a new pomegranate cultivar, grown in Northwest Istria, a part of the North Adriatic coastal area. Various parts of the pomegranate fruit parts were extracted in 70% ethanol or water. Total phenolic content and antioxidative capacity were respectively determined with Folin-Ciocalteu reagent and ABTS radical. Phenolics were examined and analyzed with TLC, LC-MS, and HPLC. Pomegranate juice was prepared from red arils and after thermal treatment, the stability of anthocyanins was monitored for several months to understand the effect of storage. The highest total phenolics were determined in ethanol pomegranate peel extracts (30.5 ± 0.6 mg GAE/g DM), and water peel extracts exhibited the highest antioxidative activity (128 ± 2 µg TE/g DM). After five months of storage of thermally treated pomegranate juice, 50-60 percentage points increase in anthocyanin degradation was observed. Pomegranate peel was further tested as a sustainable inedible food source for papermaking. Due to the low content of cellulose and the high percentage of extractives, as well as a distinguished texture and appearance, the paper made from pomegranate peel is best suited for the production of specialty papers, making it particularly interesting for bioactives recovery, followed by material restructuring.

3.
Ultrason Sonochem ; 64: 105002, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32045832

ABSTRACT

In paper production industry, microbial contaminations of process waters are common and can cause damage to paper products and equipment as well as the occurrence of pathogens in the end products. Chlorine omission has led to the usage of costly reagents and products of lower mechanical quality. In this study, we have tested a rotation generator equipped with two sets of rotor and stator assemblies to generate developed cavitation (unsteady cloud shedding with pressure pulsations) or supercavitation (a steady cavity in chocked cavitation conditions) for the destruction of a persistent bacteria Bacillus subtilis. Our results showed that only supercavitation was effective and was further employed for the treatment of waters isolated from an enclosed water recycle system in a paper producing plant. The water quality was monitored and assessed according to the chemical (COD, redox potential and dissolved oxygen), physical (settleable solids, insolubles and colour intensity) and biological methods (yeasts, aerobic and anaerobic bacteria, bacterial spores and moulds). After one hour of treatment, a strong 4 logs reduction was achieved for the anaerobic sulphate reducing bacteria and for the yeasts; a 3 logs reduction for the aerobic bacteria; and a 1.3 logs reduction for the heat resistant bacterial spores. A 22% reduction in COD and an increase in the redox potential (37%) were observed. Sediments were reduced by 50% and the insoluble particles by 67%. For bacterial destruction in real industrial process waters, the rotation generator of supercavitation spent 4 times less electrical energy in comparison to the previously published cavitation treatments inside the Venturi constriction design.

4.
Acta Chim Slov ; 58(1): 158-66, 2011 Mar.
Article in English | MEDLINE | ID: mdl-24061957

ABSTRACT

In this study anaerobic digestion of selected lignocellulosic substrate, namely brewery spent grain (BSG), was studied. In order to facilitate anaerobic digestion several types of pretreatment methods were tested such as: mechanical, chemical (alkali and acid) and thermo-chemical. The anaerobic digestion experiments were carried out in a semi-continuous stirred bioreactors with the organic loading rates between 2.9 and 3.9 kgCOD m-3 d-1 (1.9 and 2.5 kgVSS m-3 d-1 respectively) and corresponding hydraulic retention times of 33-39 days. Biogas production and composition, pH, COD, TSS and VSS, short chain fatty acids and phenolic compounds were measured. A significant inhibition of biogas production occurred, depending on the type of substrate pretreatment. There are indications that p-cresol is responsible for process inhibition when its concentration in the reaction mixture exceeds critical value between 115 and 240 mg L-1. Anaerobic digestion of chemically pretreated BSG (acid and alkali) and untreated-raw BSG was inhibited between the days 56 and 63 of the experiment, followed by thermo-chemically pretreated BSG on day 112 and mechanically pretreated BSG on day 126. Analyses of the substrates showed no phenolic compounds either in raw-untreated BSG or pretreated substrates, therefore the recorded p-cresol is an intermediate degradation product, responsible for process inhibition.

SELECTION OF CITATIONS
SEARCH DETAIL
...