Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Children (Basel) ; 9(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36553289

ABSTRACT

Transthoracic echocardiography (TTE) is an essential tool for diagnosis and management of congenital heart disease. Pediatric echocardiography presents unique challenges including complex anatomy, variable patient cooperation and provider expertise. Diagnostic errors inevitably occur. We designed a collaborative and stepwise quality improvement (QI) process to address diagnostic errors within our laboratory. We retrospectively reviewed medical records to identify diagnostic TTE errors in 100 consecutive cardiac surgery patients ≤ 5 years old (July 2020-January 2021). We identified 18 diagnostic errors. Most errors had minor impact (14/18), and 13 were preventable or possibly preventable. We presented these results to our sonographers and faculty and requested input on preventing and managing diagnostic errors. Our root cause analysis based on their responses yielded 7 areas for improvement (imaging, reporting, systems, time, environment, people, QI processes). Our faculty and sonographers chose QI processes and imaging as initial areas for intervention. We defined our SMART goal as a 10% reduction in diagnostic errors. We implemented interventions focused on QI processes. On initial follow up in May 2022, we identified 7 errors in 70 patients (44% reduction in error rate). Utilizing a stepwise and team-based approach, we successfully developed QI initiatives in our echocardiography laboratory. This approach can serve as a model for a collaborative QI process in other institutions.

2.
Circ Arrhythm Electrophysiol ; 15(11): e011145, 2022 11.
Article in English | MEDLINE | ID: mdl-36306332

ABSTRACT

BACKGROUND: Guidelines recommend observation for atrioventricular node recovery until postoperative days (POD) 7 to 10 before permanent pacemaker placement (PPM) in patients with heart block after congenital cardiac surgery. To aid in surgical decision-making for early PPM, we established criteria to identify patients at high risk of requiring PPM. METHODS: We reviewed all cases of second degree and complete heart block (CHB) on POD 0 from August 2009 through December 2018. A decision tree model was trained to predict the need for PPM amongst patients with persistent CHB and prospectively validated from January 2019 through March 2021. Separate models were developed for all patients on POD 0 and those without recovery by POD 4. RESULTS: Of the 139 patients with postoperative heart block, 68 required PPM. PPM was associated with older age (3.2 versus 1.0 years; P=0.018) and persistent CHB on POD 0 (versus intermittent CHB or second degree heart block; 87% versus 58%; P=0.001). Median days [IQR] to atrioventricular node recovery was 2 [0-5] and PPM was 9 [6-11]. Of the 100 cases of persistent CHB (21 in the validation cohort), 59 (59%) required PPM. A decision tree model identified 4 risk factors for PPM in patients with persistent CHB: (1) aortic valve replacement, subaortic stenosis repair, or Konno procedure; (2) ventricular L-looping; (3) atrioventricular valve replacement; (4) and absence of preoperative antiarrhythmic agent (in POD 0 model only). The POD 4 model specificity was 0.89 [0.67-0.99] and positive predictive value was 0.94 [95% CI 0.81-0.98], which was stable in prospective validation (positive predictive value 1.0). CONCLUSIONS: A data-driven analysis led to actionable criteria to identify patients requiring PPM. Patients with left ventricular outflow tract surgery, atrioventricular valve replacement, or ventricular L-Looping could be considered for PPM on POD 4 to reduce risks of temporary pacing and improve care efficiency.


Subject(s)
Atrioventricular Block , Heart Defects, Congenital , Heart Valve Prosthesis , Pacemaker, Artificial , Humans , Pacemaker, Artificial/adverse effects , Aortic Valve/surgery , Heart Valve Prosthesis/adverse effects , Arrhythmias, Cardiac/complications , Risk Factors , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/surgery , Heart Defects, Congenital/complications , Postoperative Complications/therapy , Treatment Outcome , Retrospective Studies , Cardiac Pacing, Artificial/adverse effects
3.
Pediatr Crit Care Med ; 23(5): 371-377, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35213412

ABSTRACT

OBJECTIVES: We have previously shown that patients with a chromosome 22q11 microdeletion are at risk for prolonged respiratory failure after pulmonary artery reconstruction surgery compared with those with normal genotype. We sought to describe preexisting airway abnormalities in this patient population and examine relationships between airway abnormalities and outcomes. DESIGN: Single-center retrospective chart review from Society of Thoracic Surgery and Pediatric Cardiac Critical Care Consortium databases and the electronic medical record. SETTING: Lucile Packard Children's Hospital at Stanford from September 2017 to February 2019. PATIENTS: All patients undergoing pulmonary artery reconstruction surgery were considered for inclusion. INTERVENTIONS: We identified 127 patients meeting study inclusion criteria. Thirty-nine patients met specific criteria and underwent screening preoperative bronchoscopy including microdirect laryngoscopy and lower airway examination. Postoperative bronchoscopy was performed at the discretion of the intensive care team. MEASUREMENTS AND MAIN RESULTS: Airway abnormalities were detected in 25/26 of children (96%) with a chromosome 22q11 deletion who underwent preoperative bronchoscopy. Upper and lower airway pathologies were found in 19/25 (73%) and 21/25 (81%) patients, respectively, and it was common for patients to have more than one abnormality. Presence of 22q11 deletion was associated with longer duration of mechanical ventilation (9.1 vs 4.3 d; p = 0.001), use of noninvasive positive pressure support (13 vs 6 d; p = 0.001), and longer hospital stays (30 vs 14 d; p = 0.002). These outcomes were worse when compared with patients with known airway abnormalities who did not have 22q11 deletion. CONCLUSIONS: Preexisting upper and lower airway pathologies are common in patients with a chromosome 22q11 deletion who undergo pulmonary artery reconstruction surgery. Despite similar postoperative hemodynamics and outcomes as their counterparts without 22q11 deletion, 22q11 deletion is associated with more postoperative respiratory complications not entirely explained by preexisting airway abnormalities.


Subject(s)
Pulmonary Artery , Respiratory Insufficiency , Bronchoscopy , Child , Chromosome Deletion , Humans , Lung , Postoperative Complications/epidemiology , Pulmonary Artery/surgery , Respiratory Insufficiency/genetics , Retrospective Studies
5.
J Heart Lung Transplant ; 40(4): 298-306, 2021 04.
Article in English | MEDLINE | ID: mdl-33485775

ABSTRACT

BACKGROUND: Indications for a heart‒liver transplantation (HLT) for Fontan recipients are not well defined. We compared listing characteristics, post-operative complications, and post-transplant outcomes of Fontan recipients who underwent HLT with those of patients who underwent heart-only transplantation (HT). We hypothesized that patients who underwent HLT have increased post-operative complications but superior survival outcomes compared with patients who underwent HT. METHODS: We performed a retrospective review of Fontan recipients who underwent HLT or HT at a single institution. Characteristics at the time of listing, including the extent of liver disease determined by laboratory, imaging, and biopsy data, were compared. Post-operative complications were assessed, and the Kaplan‒Meier survival method was used to compare post-transplant survival. Univariate regression analyses were performed to identify the risk factors for increased mortality and morbidity among patients who underwent HT. RESULTS: A total of 47 patients (9 for HLT, 38 for HT) were included. Patients who underwent HLT were older, were more likely to be on dual inotrope therapy, and had evidence of worse liver disease. Whereas ischemic time was longer for the group who underwent HLT, post-operative complications were similar. Over a median post-transplant follow-up of 17 (interquartile range: 5-52) months, overall mortality for the cohort was 17%; only 1 patient who underwent HLT died (11%) vs 7 patients who underwent HT (18%) (p = 0.64). Among patients who underwent HT, cirrhosis on pre-transplant imaging was associated with worse outcomes. CONCLUSIONS: Despite greater inotrope need and more severe liver disease at the time of listing, Fontan recipients undergoing HLT have post-transplant outcomes comparable with those of patients undergoing HT. HLT may offer a survival benefit for Fontan recipients with liver disease.


Subject(s)
Fontan Procedure , Heart Defects, Congenital/surgery , Heart Transplantation/methods , Liver Transplantation/methods , Postoperative Complications/epidemiology , Adolescent , California/epidemiology , Child , Female , Follow-Up Studies , Graft Survival , Heart Defects, Congenital/mortality , Humans , Incidence , Male , Prognosis , Retrospective Studies , Risk Factors , Survival Rate/trends , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...