Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687783

ABSTRACT

Kaonic atom X-ray spectroscopy is a consolidated technique for investigations on the physics of strong kaon-nucleus/nucleon interaction. Several experiments have been conducted regarding the measurement of soft X-ray emission (<20 keV) from light kaonic atoms (hydrogen, deuterium, and helium). Currently, there have been new research activities within the framework of the SIDDHARTA-2 experiment and EXCALIBUR proposal focusing on performing precise and accurate measurements of hard X-rays (>20 keV) from intermediate kaonic atoms (carbon, aluminum, and sulfur). In this context, we investigated cadmium-zinc-telluride (CdZnTe or CZT) detectors, which have recently demonstrated high-resolution capabilities for hard X-ray and gamma-ray detection. A demonstrator prototype based on a new cadmium-zinc-telluride quasi-hemispherical detector and custom digital pulse processing electronics was developed. The detector covered a detection area of 1 cm2 with a single readout channel and interesting room-temperature performance with energy resolution of 4.4% (2.6 keV), 3% (3.7 keV), and 1.4% (9.3 keV) FWHM at 59.5, 122.1, and 662 keV, respectively. The results from X-ray measurements at the DAΦNE collider at the INFN National Laboratories of Frascati (Italy) are also presented with particular attention to the effects and rejection of electromagnetic and hadronic background.

2.
Appl Radiat Isot ; 197: 110822, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37141750

ABSTRACT

Large area Silicon Drift Detectors are employed in high sensitivity tests of the Pauli Exclusion Principle by the VIP-2 Collaboration. The experiment is operated in the extremely low cosmic background environment of the Gran Sasso underground National Laboratory of INFN. In this work an off-line analysis method is proposed which provides an additional background reduction, as well as a better calibration procedure. The study concerns in particular the charge sharing between nearby cells, and is applied to the data set collected during the 2018 VIP-2 campaign. The cross-talk effect inside the detectors array is described and an effective topological method to reject the background induced by charge sharing is outlined.

3.
Entropy (Basel) ; 25(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36832661

ABSTRACT

Models of dynamical wave function collapse consistently describe the breakdown of the quantum superposition with the growing mass of the system by introducing non-linear and stochastic modifications to the standard Schrödinger dynamics. Among them, Continuous Spontaneous Localization (CSL) was extensively investigated both theoretically and experimentally. Measurable consequences of the collapse phenomenon depend on different combinations of the phenomenological parameters of the model-the strength λ and the correlation length rC-and have led, so far, to the exclusion of regions of the admissible (λ-rC) parameters space. We developed a novel approach to disentangle the λ and rC probability density functions, which discloses a more profound statistical insight.

SELECTION OF CITATIONS
SEARCH DETAIL
...