Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 11(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35631728

ABSTRACT

Leaf removal is a canopy management practice widely applied in viticulture to enhance the phenol composition and concentration of grapes, which then results in improved wine quality. Many studies were carried out on red berried varieties, but information on white ones is scanty. The aim of the study was to assess the effect of basal leaf defoliation in post fruit set on the phenol composition, ascorbate level and antioxidant activity of Trebbiano grapes. Electron paramagnetic resonance was also employed to monitor the decay kinetics of 1,1-diphenyl-2-picrylhydrazyl which allowed the identification of antioxidants with different action rates. The results show that defoliation caused an increase in the phenolic acid (hydroxycinnamic and hydroxybenzoic acids) and flavonol concentrations of berries without changes in the composition. Both ascorbate and antioxidant activity were also enhanced in the berries from defoliated vines. Besides increasing the number of fast-rate antioxidants, leaf removal resulted in the formation of intermediate-rate ones. In the Trebbiano variety, leaf removal in the post fruit set may represent an effective strategy to enhance the phenolic composition and the antioxidant defense system of berries.

2.
Foods ; 10(5)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33923099

ABSTRACT

This research aimed to explore the feasibility of fortifying bread with cooked Vitelotte potato powder and Citrus albedo, comparing the use of baker's yeast or sourdough as leavening agents. Breads obtained were thus subjected to physico-chemical and sensory characterizations. The replacement of part of the wheat flour with purple potato and albedo determined a significant enhancement of the phenolic profile and antioxidant status of fortified breads, as well as a longer shelf life. Thanks to its acidity and antimicrobial activity, sourdough improved the levels of health-promoting compounds and stability. Both the fortification and the leavening agent deeply affected the organoleptic, expression, and the aroma profile, of the fortified bread. Interestingly, albedo addition, despite its effectiveness in boosting the phenolic profile, determined a higher perception of aftertaste and bitterness, irrespective of the leavening agent. Based on these results, the use of purple potatoes and Citrus albedo, if properly formulated, could represent a valuable strategy for the development of high-quality products, with longer shelf-life.

3.
Molecules ; 25(21)2020 Oct 24.
Article in English | MEDLINE | ID: mdl-33114449

ABSTRACT

In this study, the effect of different drying processes (freeze-drying (FD), microwave-assisted drying (MWD) and classic hot air drying (HAD)) on the polyphenols, flavonoids, and amino acids content was investigated on bee-collected chestnut, willow and ivy pollen for human consumption. Furthermore, the pollen chemical properties were monitored after three and six months of storage, and then analyzed using a multivariate approach. Chestnut pollen was the richest source of polyphenols, flavonoids, and rutin, while ivy pollen contained the highest amount of total and free amino acids, and total and free proline. Drying and storage affected pollen chemical composition with species-dependent effects. MWD allowed the best retention of flavonoids in chestnut pollen for up to six months of storage. All drying techniques led to a depletion of flavonoids in willow pollen; however, MWD ensured the highest flavonoids content after six months. FD and MWD did not lead to flavonoids depletion in ivy pollen during storage. Additionally, storage did not affect the rutin content, which was highest in FD willow samples after six months. Notably, both FD and MWD techniques are efficient in preserving amino acids-related quality of bee pollen up to six months of storage.


Subject(s)
Amino Acids/chemistry , Dietary Supplements/analysis , Flavonoids/chemistry , Pollen/chemistry , Polyphenols/chemistry , Rutin/chemistry , Animals , Bees , Chromatography, High Pressure Liquid , Desiccation , Food Storage , Freeze Drying , Microwaves , Multivariate Analysis , Nutritive Value
4.
Sci Rep ; 10(1): 12856, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732890

ABSTRACT

The increasing demand for healthy baked goods boosted studies on sourdough microbiota with beneficial metabolic traits, to be used as potential functional starters. Here, 139 yeasts isolated from cereal-based fermented foods were in vitro characterized for their phytase and antioxidant activities. The molecular characterization at strain level of the best 39 performing isolates showed that they did not derive from cross contamination by baker's yeast. Afterwards, the 39 isolates were in vivo analyzed for their leavening ability, phytase activity and polyphenols content using five different wholegrain flours, obtained from conventional and pigmented common wheat, emmer and hull-less barley. Combining these findings, through multivariate permutation analysis, we identified the 2 best performing strains, which resulted diverse for each flour. Doughs singly inoculated with the selected strains were further analyzed for their antioxidant capacity, phenolic acids, xanthophylls and anthocyanins content. All the selected yeasts significantly increased the total antioxidant activity, the soluble, free and conjugated, forms of phenolic acids and anthocyanins of fermented doughs. This study revealed the importance of a specific selection of yeast strains for wholegrain flours obtained from different cereals or cultivars, in order to enhance the pro-technological, nutritional and nutraceutical traits of fermented doughs.


Subject(s)
Bread/microbiology , Edible Grain/microbiology , Fermentation/physiology , Flour/microbiology , Saccharomyces cerevisiae/physiology , Saccharomycetales/physiology , 6-Phytase/metabolism , Anthocyanins/metabolism , Antioxidants/metabolism , Bread/analysis , Edible Grain/anatomy & histology , Flour/analysis , Hydroxybenzoates/metabolism , Polyphenols/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomycetales/metabolism , Xanthophylls/metabolism
5.
Nutrients ; 12(6)2020 May 27.
Article in English | MEDLINE | ID: mdl-32471156

ABSTRACT

: Recently the use of food by-products as natural sources of biologically active substances has been extensively investigated especially for the development of functional foods fortified with natural antioxidants. Due to their content of bioactive compounds, such as carotenoids, flavonoids and limonoids, citrus peels could be suitable to formulate enriched olive oils able to boost healthy nutrition. The aim of this study was: (i) to determine the compositional and sensory profiles of citrus olive oil; and (ii) to evaluate its nutraceutical properties in rats with high fat diet-induced metabolic syndrome and oxidative stress. The results obtained show the potential of using citrus peels as a source of bioactive compounds to improve the sensory profile as well as the phytochemical composition of olive oil. We demonstrated that the production system of Citrus x aurantium olive oil and Citrus limon olive oil improves its organoleptic properties without altering its beneficial effects, which, like control extra virgin olive oil, showed protective effects relating to glucose and serum lipid levels, metabolic activity of adipocytes, myocardial tissue functionality, oxidative stress markers and endothelial function at blood vessel level.


Subject(s)
Cardiovascular System/drug effects , Citrus/chemistry , Dietary Supplements , Olive Oil/pharmacology , Plant Extracts/pharmacology , Plant Oils/pharmacology , Adipose Tissue , Adult , Animals , Antioxidants/pharmacology , Biomarkers , Carotenoids/pharmacology , Female , Flavonoids/pharmacology , Humans , Limonins/pharmacology , Male , Metabolic Syndrome , Middle Aged , Olive Oil/chemistry , Oxidative Stress/drug effects , Phytochemicals/pharmacology , Rats , Young Adult
6.
Saudi J Biol Sci ; 26(2): 252-255, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31485162

ABSTRACT

Honeybee-collected pollen is gaining attention as functional food for human consumption, due to antiproliferative, antiallergic, antibiotic, antidiarrheic and antioxidant activities. Among the different bioactive compounds, flavonoids from bee-collected pollen are currently recognised as powerful antioxidant and antiradical molecules. Traditional conservation methods influence pollen organoleptic properties as well as the contents of nutrients and nutraceutical compounds. Here, freeze-drying (FD) was proposed as a novel conservation method, estimating its adequacy as drying process by the evaluation of changes in free and total amino acids and proline as well as in their ratios. Honeybee-collected chestnut pollen was taken into consideration and the level of rutin, as main flavonoid, was considered as marker compound highlighting the maintenance of pollen nutraceutical properties. Results showed that FD influenced rutin level, depending on the FD duration. However, the free proline to free amino acid ratio was always below 80%, and the free amino acid to total amino acid ratio remained unaltered indicating the adequacy of the FD treatment, which did not affect the nutritional value of chestnut pollen. Overall, this study shed light on the nutraceutical profile of honeybee-collected chestnut pollen, highlighting the promising potential of FD as a novel method to treat pollen for human consumption.

7.
Molecules ; 24(14)2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31330951

ABSTRACT

The nutraceutical properties of extra-virgin olive oil (EVOO) can be further improved by the addition of olive leaves during olive pressing. However, while Citrus leaves are rich sources of bioactive substances, no data are available in the literature about the effect of Citrus leaf addition on the nutraceutical and sensorial profiles of olive oil. This study aimed at comparing the chemical and sensorial qualities of olive oils obtained from ripe olives pressed together with either Olea or Citrus spp. (lemon or orange) cryomacerated leaves. General composition parameters as well as major antioxidants and antioxidant activity were measured. A panel test evaluation, as well as headspace volatile characterization (headspace solid phase microextraction, HS-SPME), were also performed. All data were compared with an EVOO extracted from the same olive batch used as control. It was possible to obtain Leaf Olive Oils (LOOs) characterized by a higher (p < 0.05) content of antioxidants, compared to the control sample, and the highest oleuropein concentration was detected in the olive oil extracted in presence of olive leaf (+50% in comparison with the control). All the LOOs showed a higher smell complexity and the scent of ripe fruit was generally mitigated. Lemon and olive LOOs showed the best smell profile.


Subject(s)
Citrus/chemistry , Olea/chemistry , Olive Oil/chemistry , Plant Leaves/chemistry , Chemical Fractionation , Dietary Supplements , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Olive Oil/isolation & purification , Olive Oil/pharmacology , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology
8.
Molecules ; 24(3)2019 Feb 02.
Article in English | MEDLINE | ID: mdl-30717325

ABSTRACT

The aim of the present research was to study the effects of olive leaf addition (0 and 3%) on the major antioxidants and the antioxidant activity of Neb Jmel and Oueslati olive oils. Olives and leaves of the two Tunisian varieties were harvested during the 2016/2017 crop season. Both leaves and oils were characterised for their concentrations in phenolics, tocopherols and antioxidant power. Other parameters such as free acidity, peroxide value, chlorophyll and carotenoid concentrations were also taken into consideration. Compared to Oueslati, the Neb Jmel oil showed a lower free acidity (50%) and peroxide value (5.6-fold), and higher chlorophyll (1.6-fold), total phenolics (1.3-fold), flavonoid (3-fold) and oleuropein derivative (1.5-fold) concentrations, in addition to an increased antioxidant activity (1.6-fold). Leaf addition promoted a significant increment in total chlorophyll, α-tocopherol and phenolics in both varieties, above all in Oueslati oil, due to a higher abundance of bioactive constituents in the corresponding leaves. In particular, chlorophyll and carotenoid concentrations reached values twice higher than in Neb Jmel leaves, and flavonoids and oleouperin derivatives were three-fold higher. This prevented the oxidation and the formation of peroxides, reducing the peroxide value of the fortified oil to the half. The results provide evidence on the performance of the Tunisian Neb Jmel and Oueslati varieties, showing that their oils present a chemical profile corresponding to the extra virgin olive oil category and that, after leaf addition, their nutritional value was improved.


Subject(s)
Antioxidants/chemistry , Dietary Supplements , Olive Oil/chemistry , Phenols/chemistry , Humans , Olea/chemistry , Peroxides/chemistry , Tocopherols/chemistry
9.
Molecules ; 24(1)2018 Dec 25.
Article in English | MEDLINE | ID: mdl-30585205

ABSTRACT

The essential oils extracted from the peels of two Tuscany Citrus of the Massa province have been characterised. Moreover, the flavedo of these species has been used in the production of two Citrus olive oils (COOs) obtained with an innovative method in which the citrus peels are cryomacerated and then pressed with the olives. The presence of functional compounds, such as carotenoids, naringenin and minor phenolics, classifies these COOs as nutraceuticals with the potential to develop enriched foods able to promote a healthy diet. Moreover, the increased presence of tyrosol and hydroxytyrosol, compared to the unflavoured oil, further highlights the nutritional value to the two COOs, being these phenolic compounds recognized as good possible therapeutic candidates for the inhibition of neurodegenerative diseases as the Parkinson's disease. In this perspective, the citrus peels, rich in bioactive compounds, have been valued transforming their waste nature in an innovative resource.


Subject(s)
Citrus/chemistry , Dietary Supplements/analysis , Olea/chemistry , Plant Oils/chemistry , Carotenoids/chemistry , Flavanones/chemistry , Food, Fortified/analysis , Oils, Volatile/chemistry , Phenols/chemistry , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/chemistry
10.
Heliyon ; 4(11): e00888, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30417155

ABSTRACT

This research aimed to study the effects of packaging and storage temperature on the shelf-life of an extra virgin olive oil (EVOO) as it can occur in most points of sale. The evolution of the chemical and sensory characteristics of an EVOO, initially stored in stainless steel silos under nitrogen at 12-18 °C, was evaluated after packaging. Tinplate tin (TT) and greenish glass (GG), the most used packaging containers, and temperatures of 6 and 26 °C were taken into consideration. After 125 days from packaging all the samples maintained clearness, green and yellow reflections and the positive sensory notes of bitterness and pungency of the starting EVOO. Shelf-life of EVOO was significantly affected by different storage conditions: oil samples stored in GG at 6 °C preserved for the most part the positive attributes, whereas those stored in TT at 26 °C showed a significant presence of the rancid flavor due to oxidative processes. Moreover, samples stored in GG at 6 °C maintained the highest bitterness intensity and did not show defects at the end of the storage period. The results suggest that storage in GG at a low temperature could represent a promising storage condition to slow-down the oil degradation during market storage.

11.
Plant Physiol Biochem ; 123: 233-241, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29253801

ABSTRACT

The present study was focused on lettuce, a widely consumed leafy vegetable for the large number of healthy phenolic compounds. Two differently-pigmented lettuce cultivars, i.e. an acyanic-green leaf cv. and an anthocyanic-red one, were grown under high light intensity or elevated CO2 or both in order to evaluate how environmental conditions may affect the production of secondary phenolic metabolites and, thus, lettuce quality. Mild light stress imposed for a short time under ambient or elevated CO2 concentration increased phenolics compounds as well as antioxidant capacity in both lettuce cvs, indicating how the cultivation practice could enhance the health-promoting benefits of lettuce. The phenolic profile depended on pigmentation and the anthocyanic-red cv. always maintained a higher phenolic amount as well as antioxidant capacity than the acyanic-green one. In particular, quercetin, quercetin-3-O-glucuronide, kaempferol, quercitrin and rutin accumulated under high light or high CO2 in the anthocyanic-red cv., whereas cyanidin derivatives were responsive to mild light stress, both at ambient and elevated CO2. In both cvs total free and conjugated phenolic acids maintained higher values under all altered environmental conditions, whereas luteolin reached significant amounts when both stresses were administered together, indicating, in this last case, that the enzymatic regulation of the flavonoid synthesis could be differently affected, the synthesis of flavones being favored.


Subject(s)
Carbon Dioxide/pharmacology , Flavonoids/biosynthesis , Lactuca/metabolism , Light , Phenols/metabolism
12.
J Agric Food Chem ; 65(27): 5443-5452, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28656773

ABSTRACT

The effect of field foliar Fe and Zn biofortification on concentration and potential bioavailability of Fe and Zn and health-promoting compounds was studied in wholemeal flour of two common wheat varieties (old vs modern). Moreover, the effect of milling and bread making was studied. Biofortification increased the concentration of Zn (+78%) and its bioavailability (+48%) in the flour of the old variety, whereas it was ineffective in increasing Fe concentration in both varieties. However, the old variety showed higher concentration (+41%) and bioavailability (+26%) of Fe than the modern one. As regard milling, wholemeal flour had higher Fe, Zn concentration and health-promoting compounds compared to white flour. Bread making slightly change Fe and Zn concentration but greatly increased their bioavailability (77 and 70%, respectively). All these results are of great support for developing a production chain of enriched functional bread having a protective role against chronic cardio-vascular diseases.


Subject(s)
Dietary Supplements/analysis , Flour/analysis , Iron/analysis , Triticum/chemistry , Zinc/analysis , Zinc/metabolism , Biofortification , Bread/analysis , Cooking , Food, Fortified/analysis , Humans , Iron/metabolism
13.
Plant Physiol Biochem ; 115: 269-278, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28411511

ABSTRACT

Both salt stress and high CO2 level, besides influencing secondary metabolism, can affect oxidative status of plants mainly acting in an opposite way with salinity provoking oxidative stress and elevated CO2 alleviating it. The aim of the present work was to study the changes in the composition of phenolic acids and flavonoids as well as in the antioxidant activity in two differently pigmented lettuce cvs (green or red leaf) when submitted to salinity (200 mM NaCl) or elevated CO2 (700 ppm) or to their combination in order to evaluate how a future global change can affect lettuce quality. Following treatments, the red cv. always maintained higher levels of antioxidant secondary metabolites as well as antioxidant activity, proving to be more responsive to altered environmental conditions than the green one. Overall, these results suggest that the application of moderate salinity or elevated CO2, alone or in combination, can induce the production of some phenolics that increase the health benefits of lettuce. In particular, moderate salinity was able to induce the synthesis of the flavonoids quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide and quercitrin. Phenolics-enrichment as well as a higher antioxidant capacity were also observed under high CO2 with the red lettuce accumulating cyanidin, free chlorogenic acid, conjugated caffeic and ferulic acid as well as quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide, luteolin-7-O-glucoside, rutin, quercitrin and kaempferol. When salinity was present in combination with elevated CO2, reduction in yield was prevented and a higher presence of phenolic compounds, in particular luteolin, was observed compared to salinity alone.


Subject(s)
Carbon Dioxide/pharmacology , Lactuca/drug effects , Lactuca/metabolism , Phenols/metabolism , Anthocyanins/metabolism , Antioxidants/metabolism , Flavones/metabolism , Glucosides/metabolism , Quercetin/analogs & derivatives , Quercetin/metabolism , Salinity , Sodium Chloride/pharmacology
14.
Materials (Basel) ; 9(5)2016 May 12.
Article in English | MEDLINE | ID: mdl-28773484

ABSTRACT

Bee pollen is becoming an important product thanks to its nutritional properties, including a high content of bioactive compounds such as essential amino acids, antioxidants, and vitamins. Fresh bee pollen has a high water content (15%-30% wt %), thus it is a good substrate for microorganisms. Traditional conservation methods include drying in a hot air chamber and/or freezing. These techniques may significantly affect the pollen organoleptic properties and its content of bioactive compounds. Here, a new conservation method, microwave drying, is introduced and investigated. The method implies irradiating the fresh pollen with microwaves under vacuum, in order to reduce the water content without reaching temperatures capable of thermally deteriorating important bioactive compounds. The method was evaluated by taking into account the nutritional properties after the treatment. The analyzed parameters were phenols, flavonoids, with special reference to rutin content, and amino acids. Results showed that microwave drying offers important advantages for the conservation of bee pollen. Irrespective of microwave power and treatment time, phenol and flavonoid content did not vary over untreated fresh pollen. Similarly, rutin content was unaffected by the microwave drying, suggesting that the microwave-assisted drying could be a powerful technology to preserve bioprotective compounds in fresh pollen.

15.
J Agric Food Chem ; 63(31): 7041-50, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26194177

ABSTRACT

This work investigated the effect of nitrogen fertilization and harvest time on the flavonoid composition and antioxidant properties of Stevia rebaudiana leaves. At the same time, changes in stevioside (Stev) and rebaudioside A (RebA) contents were recorded. A pot trial under open air conditions was set up, testing five N rates and three harvest times. The results showed that, by using an adequate N rate and choosing an appropriate harvest time, it was possible to significantly increase and optimize the bioactive compound levels. In particular, higher RebA, RebA/Stev ratio, total phenols and flavonoids, luteolin-7-O-glucoside, and apigenin-7-O-glucoside levels and antioxidant capacity were recorded by supplying 150 kg N ha(-1). Reduced or increased N availability in comparison with N150 had no consistent effect on Stevia phytochemicals content. Significant correlations were also found between stevioside and some of the flavonoids, indicating a possible role of flavonoids in the stevioside metabolic pathway, which deserves more investigations.


Subject(s)
Antioxidants/chemistry , Diterpenes, Kaurane/chemistry , Flavonoids/chemistry , Nitrogen/metabolism , Plant Extracts/chemistry , Stevia/growth & development , Stevia/metabolism , Antioxidants/metabolism , Diterpenes, Kaurane/metabolism , Flavonoids/metabolism , Plant Extracts/metabolism , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/metabolism , Stevia/chemistry
16.
Food Chem ; 175: 445-51, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25577104

ABSTRACT

Since organic food is widely assumed to have a better nutritional quality than conventional food, our aim was to study the effects of organic vs conventional cropping systems on yield and the phenolic composition of winter wheat cv. 'Bologna'. Although organic wheat yielded less than conventional wheat, mainly due to the nitrogen shortage, and its bread-making quality was lower, the cultivation system did not affect the total amounts of phenolics and phenolic acids. Of the eight phenolic acids identified, only ferulic acid was influenced by the cultivation system. Phenolic composition and quantity were significantly affected by the milling fraction (bran or white flour): phenolics were more concentrated in the bran, which showed the highest antioxidant power. Under the conditions adopted in this study, an organic cropping system can maintain or even increase the health properties of the wheat milled products, provided a reduction in grain yield is accepted.


Subject(s)
Antioxidants/analysis , Dietary Fiber/analysis , Flour/analysis , Food, Organic/analysis , Phenols/analysis , Triticum/chemistry , Triticum/growth & development , Crops, Agricultural/chemistry , Crops, Agricultural/growth & development , Nutritive Value , Seasons
17.
J Agric Food Chem ; 62(49): 12001-7, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25389053

ABSTRACT

Differently colored lettuce (Lactuca sativa L.) cultivars (green, green/red, and red) were studied to correlate their phenolic composition with their antioxidant kinetic behavior. Electron paramagnetic resonance (EPR) was employed to monitor decay kinetics of 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)), which allowed the identification of three differently paced antioxidants. The results showed that as long as lettuce had higher red pigmentation, the hydrophilic antioxidant capacity increased together with the contents in free and conjugated phenolic acids, free and conjugated flavonoids, and anthocyanins. EPR allowed the identification of slow-rate antioxidants in green and green/red cultivars, intermediate-rate antioxidants in green, green/red, and red cultivars, and fast-rate antioxidants in green/red and red cultivars. At present, the different kinetic behaviors cannot be attributed to a specific antioxidant, but it is suggested that the flavonoid quercetin accounted for the majority of the intermediate-rate antioxidants, whereas the anthocyanins accounted for the majority of the fast-rate antioxidants.


Subject(s)
Antioxidants/chemistry , Electron Spin Resonance Spectroscopy/methods , Lactuca/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Kinetics , Lactuca/classification
18.
Biochim Biophys Acta ; 1838(1 Pt B): 465-73, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24184423

ABSTRACT

EPR spectroscopy was applied to investigate the effects of the treatment of Candida albicans cells with fluconazole (FLC) and two newly synthesized azoles (CPA18 and CPA109), in a concentration not altering yeast morphology, on the lipid organization and dynamics of the plasma membrane. Measurements were performed in the temperature range between 0°C and 40°C using 5-doxyl- (5-DSA) and 16-doxyl- (16-DSA) stearic acids as spin probes. 5-DSA spectra were typical of lipids in a highly ordered environment, whereas 16-DSA spectra consisted of two comparable components, one corresponding to a fluid bulk lipid domain in the membrane and the other to highly ordered and motionally restricted lipids interacting with integral membrane proteins. A line shape analysis allowed the relative proportion and the orientational order and dynamic parameters of the spin probes in the different environments to be determined. Smaller order parameters, corresponding to a looser lipid packing, were found for the treated samples with respect to the control one in the region close to the membrane surface probed by 5-DSA. On the other hand, data on 16-DSA indicated that azole treatments hamper the formation of ordered lipid domains hosting integral proteins and/or lead to a decrease in integral protein content in the membrane. The observed effects are mainly ascribable to the inhibition of ergosterol biosynthesis by the antifungal agents, although a direct interaction of the CPA compounds with the membrane bilayer in the region close to the lipid polar head groups cannot be excluded.


Subject(s)
Antifungal Agents/chemistry , Azoles/chemistry , Cell Membrane/chemistry , Fluconazole/chemistry , Membrane Lipids/chemistry , Membrane Proteins/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Azoles/chemical synthesis , Azoles/pharmacology , Candida albicans/chemistry , Cell Fractionation , Cell Membrane/drug effects , Cyclic N-Oxides , Electron Spin Resonance Spectroscopy , Fluconazole/pharmacology , Membrane Fluidity/drug effects , Spin Labels , Temperature
19.
J Antimicrob Chemother ; 68(5): 1111-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23292344

ABSTRACT

OBJECTIVES: In this study we investigated the in vitro fungistatic and fungicidal activities of CPA18 and CPA109, two azole compounds with original structural features, alone and in combination with fluconazole against fluconazole-susceptible and -resistant Candida albicans strains. METHODS: Antifungal activities were measured by MIC evaluation and time-kill studies. Azole binding analysis was performed by UV-Vis spectroscopy. Hyphal growth inhibition and filipin and propidium iodide staining assays were used for morphological analysis. An analysis of membrane lipids was also performed to gauge alterations in membrane composition and integrity. Synergism was calculated using fractional inhibitory concentration indices (FICIs). Evaluation of cytotoxicity towards murine macrophages was performed to verify selective antifungal activity. RESULTS: Even though their binding affinity to C. albicans Erg11p is comparable to that of fluconazole, CPA compounds are active against resistant strains of C. albicans with a mutation in ERG11 sequences and/or overexpressing the ABC transporter genes CDR1 and CDR2, which encode ATP-dependent efflux pumps. Moreover, CPA18 is fungistatic, even against the two resistant strains, and was found to be synergistic with fluconazole. Differently from fluconazole and other related azoles, CPA compounds induced marked changes in membrane permeability and dramatic alterations in membrane lipid composition. CONCLUSIONS: Our outcomes suggest that CPA compounds are able to overcome major mechanisms of resistance in C. albicans. Also, they are promising candidates for combination treatment that could reduce the toxicity caused by high fluconazole doses, particularly in immunocompromised patients.


Subject(s)
Antifungal Agents/pharmacology , Azoles/pharmacology , Candida albicans/drug effects , Animals , Antifungal Agents/toxicity , Azoles/toxicity , Candida albicans/growth & development , Candida albicans/physiology , Cell Membrane/drug effects , Cell Membrane/physiology , Cell Survival/drug effects , Drug Synergism , Filipin/metabolism , Hyphae/drug effects , Hyphae/growth & development , Hyphae/physiology , Macrophages/drug effects , Mice , Microbial Sensitivity Tests , Microbial Viability/drug effects , Propidium/metabolism , Staining and Labeling
20.
J Plant Physiol ; 170(2): 121-8, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23206931

ABSTRACT

The antioxidative response of grapevine leaves (Vitis vinifera cv. Trebbiano) affected by the presence of grapevine fanleaf virus was studied during the summer of 2010 at three different harvest times (July 1st and 26th, and August 30th). At the first and second harvest, infected leaves showed increases in the concentration of superoxide radical and hydrogen peroxide, the latter increasing for enhanced activity of superoxide dismutase. In contrast, at the last harvest time, increases in the ascorbate pool and ascorbate peroxidase activity maintained hydrogen peroxide to control levels. The glutathione pool was negatively affected as summer progressed, showing a decrease in its total and reduced form amounts. At the same time, increases in the ascorbate pool were observed, making antioxidant defenses of grapevine effective also at the last harvest time. Increases in phenolic acids, and in particular in p-hydroxybenzoic acid, at the first and second harvest might have enhanced the efficiency of the antioxidant system through an interrelation between a peroxidase/phenol/ascorbate system and the NADPH/glutathione/ascorbate cycle. The lack of increase in p-hydroxybenzoic acid at the third harvest could be due instead to the enhanced utilization of this acid for hydrogen peroxide detoxification. With time, grapevine plants lost their capacity to contrast the spread of grapevine fanleaf virus, but acquired a greater ability to counteract pathogen-induced oxidative stress, being endowed with more reduced antioxidant pools.


Subject(s)
Antioxidants/metabolism , Disease Resistance/physiology , Nepovirus/pathogenicity , Plant Leaves/metabolism , Vitis/growth & development , Vitis/virology , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Plant Development/physiology , Plant Leaves/virology , Seasons , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...