Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 133(6): 1873-1886, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32060572

ABSTRACT

KEY MESSAGE: Four QTL for ergot resistance (causal pathogen Claviceps purpurea) have been identified in the durum wheat cultivar Greenshank. Claviceps purpurea is a pathogen of grasses that infects flowers, replacing the seed with an ergot sclerotium. Ergot presents a significant problem to rye, barley and wheat, in particular hybrid seed production systems. In addition, there is evidence that the highly toxic alkaloids that accumulate within sclerotia can cross-contaminate otherwise healthy grain. Host resistance to C. purpurea is rare, few resistance loci having been identified. In this study, four ergot resistance loci are located on chromosomes 1B, 2A, 5A and 5B in the durum wheat cv. Greenshank. Ergot resistance was assessed through analysis of phenotypes associated with C. purpurea infection, namely the number of inoculated flowers that produced sclerotia, or resulted in ovary death but no sclerotia, the levels of honeydew produced, total sclerotia weight and average sclerotia weight and size per spike. Ergot testing was undertaken in Canada and the UK. A major effect QTL, QCp.aafc.DH-2A, was detected in both the Canadian and UK experiments and had a significant effect on honeydew production levels. QCp.aafc.DH-5B had the biggest influence on total sclerotia weight per spike. QCp.aafc.DH-1B was only detected in the Canadian experiments and QCp.aafc.DH-5A in the UK experiment. An RNASeq analysis, undertaken to identify wheat differentially expressed genes associated with different combinations of the four ergot resistance QTL, revealed a disproportionate number of DEGs locating to the QCp.aafc.DH-1B, QCp.aafc.DH-2A and QCp.aafc.DH-5B QTL intervals.


Subject(s)
Claviceps/pathogenicity , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Quantitative Trait Loci , Triticum/genetics , Genes, Plant , Hordeum/genetics , Hordeum/microbiology , Phenotype , Poaceae/genetics , Poaceae/microbiology , Transcription, Genetic , Triticum/microbiology
2.
Sci Rep ; 6: 35738, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27760994

ABSTRACT

Efficiency of yeast transformation is determined by the rate of yeast endocytosis. The aim of this study was to investigate the effect of introducing amino acids and other nutrients (inositol, adenine, or p-aminobenzoic acid) in the transformation medium to develop a highly efficient yeast transformation protocol. The target of rapamycin complex 1 (TORC1) kinase signalling complex influences the rate of yeast endocytosis. TORC signaling is induced by amino acids in the media. Here, we found that increasing the concentration of amino acids and other nutrients in the growth media lead to an increase yeast transformation efficiency up to 107 CFU per µg plasmid DNA and per 108 cells with a 13.8 kb plasmid DNA. This is over 130 times that of current published methods. This improvement may facilitate more efficient experimentation in which transformation efficiency is critical, such as yeast two-hybrid screening.


Subject(s)
Culture Media/chemistry , DNA Transformation Competence/drug effects , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Biological Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...