Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 15(6): 409, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862475

ABSTRACT

Low glucose is a common microenvironment for rapidly growing solid tumors, which has developed multiple approaches to survive under glucose deprivation. However, the specific regulatory mechanism remains largely elusive. In this study, we demonstrate that glucose deprivation, while not amino acid or serum starvation, transactivates the expression of DCAF1. This enhances the K48-linked polyubiquitination and proteasome-dependent degradation of Rheb, inhibits mTORC1 activity, induces autophagy, and facilitates cancer cell survival under glucose deprivation conditions. This study identified DCAF1 as a new cellular glucose sensor and uncovered new insights into mechanism of DCAF1-mediated inactivation of Rheb-mTORC1 pathway for promoting cancer cell survival in response to glucose deprivation.


Subject(s)
Cell Survival , Glucose , Mechanistic Target of Rapamycin Complex 1 , Ras Homolog Enriched in Brain Protein , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Ras Homolog Enriched in Brain Protein/metabolism , Ras Homolog Enriched in Brain Protein/genetics , Glucose/metabolism , Cell Line, Tumor , Autophagy , Ubiquitination , Signal Transduction , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Proteasome Endopeptidase Complex/metabolism , HEK293 Cells , Monomeric GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
2.
Cell Biol Toxicol ; 39(5): 2011-2032, 2023 10.
Article in English | MEDLINE | ID: mdl-35022897

ABSTRACT

Increasing evidence suggests that targeting ubiquitin-specific peptidase 8 (USP8) serves as an attractive anti-cancer strategy. However, the role of USP8 inhibitor, DUB-IN-1, in esophageal squamous cell carcinoma (ESCC) cells still needs to be explored. Here, immunohistochemistry was employed to examine the expression of USP8 in ESCC tissues. Cell Counting Kit-8 (CCK-8) was used to evaluate cell proliferation ability, and propidium iodide (PI) was selected to test the effect of DUB-IN-1 on cell cycle. AnnexinV-FITC/PI staining and the activity of caspase 3 were detedcted to evaluate apoptosis. Transmission electron microscope, microtubule-associated protein 1 light-chain 3 (LC3) expression, and acridine orange (AO) staining were selected to check if there was autophagy. Comet assay and γ-H2AX immunofluorescence was used to monitor DNA damage. Rescue experiment was used to determine the key role of of p53 in cell cycle, apoptosis, and autophagy. Results revealed that the leve of USP8 was higher in ESCC tissues than that in tissues adjacent to carcinoma. DUB-IN-1, an USP8 inhibitor, caused DNA damage, led to G2/M phase block by p53-p21 axis, and triggered apoptosis by regulating the p53 target proteins including Bax, Noxa, and Puma. Besides, DUB-IN-1 could stimulate autophagy through p53-dependent adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) activation. Taken together, this study revealed the cytotoxic effects and the mechanism of DUB-IN-1, which indicated that DUB-IN-1 may be a novel inhibitor targeting USP8 that can kill ESCC cells. USP8 inhibitor, DUB-IN-1, treatment could inhibit esophageal squamous cell carcinoma cell growth and induce G2/M cell cycle arrest, apoptosis, and autophagy by DNA damage-induced p53 activation. DUB-IN-1 treatment led to G2/M cell cycle arrest by upregulating the protein level of p21 and triggered apoptosis by modulating the p53 target proteins including Bax, Noxa, and Puma. Meanwhile, DUB-IN-1 treatment stimulated protective autophagy through p53-dependent AMPK activation. Collectively, these findings suggested that DNA damage-triggered p53 activation, p53-Puma/Noxa/Bax, p53-p21, and p53-AMPK pathways were all involved in the effect of DUB-IN-1.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Tumor Suppressor Protein p53/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/pharmacology , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , bcl-2-Associated X Protein/metabolism , AMP-Activated Protein Kinases/metabolism , Cell Line, Tumor , Cell Cycle Checkpoints , Apoptosis , DNA Damage , Cell Proliferation , G2 Phase Cell Cycle Checkpoints , Autophagy , Endopeptidases/genetics , Endopeptidases/metabolism , Endopeptidases/pharmacology
3.
Cell Death Dis ; 13(11): 951, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357365

ABSTRACT

The deubiquitinating enzyme USP1 (ubiquitin-specific protease 1) plays a role in the progression of various tumors, emerging as a potential therapeutic target. This study aimed to determine the role of USP1 as a therapeutic target in hepatocellular carcinoma (HCC). We detected USP1 expression in the tumor and adjacent tissues of patients with HCC using immunohistochemical staining. We evaluated the effect of the USP1 inhibitor ML-323 on HCC cell proliferation and cell cycle using a CCK-8 cell-counting kit and plate cloning assays, and propidium iodide, respectively. Apoptosis was detected by annexin V-FITC/Propidium Iodide (PI) staining and caspase 3 (casp3) activity. Transmission electron microscopy and LC3B immunofluorescence were used to detect autophagy. Western blotting was used to detect the accumulation of ubiquitinated proteins, the expression of endoplasmic reticulum (ER) stress-related proteins, and the AMPK-ULK1/ATG13 signaling pathway. We demonstrated that ML-323 inhibits the growth of HCC cells and induces G1 phase cell cycle arrest by regulating cyclin expression. ML-323 treatment resulted in the accumulation of ubiquitinated proteins, induced ER stress, and triggered Noxa-dependent apoptosis, which was regulated by the Activating Transcription Factor 4(ATF4). Moreover, active ER stress induces protective autophagy by increasing AMPK phosphorylation; therefore, we inhibited ER stress using 4-Phenylbutyric acid (4-PBA), which resulted in ER stress reduction, apoptosis, and autophagy in ML-323-treated HCC cells. In addition, blocking autophagy using the AMPK inhibitor compound C (CC), chloroquine (CQ), or bafilomycin A1 (BafA1) enhanced the cytotoxic effect of ML-323. Our findings revealed that targeting USP1 may be a potential strategy for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Protein Aggregates , AMP-Activated Protein Kinases/metabolism , Ubiquitinated Proteins , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Propidium/pharmacology , Endoplasmic Reticulum Stress , Autophagy , Apoptosis , Cell Line, Tumor , Ubiquitin-Specific Proteases
4.
Apoptosis ; 27(7-8): 545-560, 2022 08.
Article in English | MEDLINE | ID: mdl-35654870

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a common digestive cancer with high mortality rate due to late diagnosis and drug resistance. It is important to identify new molecular target and develop new anticancer strategy. ML323 is a novel USP1 inhibitor and exhibits anticancer activity against several cancers. Herein, we investigated whether ML323 has some cytotoxity effect on ESCC cells and explored the underlying mechanisms. Results revealed that ML323 impeded esophageal cancer cell viability and colony formation. Meanwhile, ML323 blocked cells at G0/G1 phase concomitant with the reduced protein level of c-Myc, cyclin D1, CDK4 and CDK6. ML323 treatment also triggered DNA damage and active p53. Then, ML323 induced apoptosis by p53-Noxa. Additionally, it stimulated protective autophagy. Co-treatment with CQ or BafA1, two classical autophagy inhibitors, enhanced the cytotoxity of ML323. These findings suggested that USP1 inhibitor (ML323) could be used as a viable anti-ESCC approach.


Subject(s)
Antineoplastic Agents , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Autophagy , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Humans , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/pharmacology
5.
Eur J Med Chem ; 229: 114069, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34971875

ABSTRACT

As the continuation of our work on the development of tubulin inhibitors with potential anticancer activities, novel bis-substituted aromatic amide dithiocarbamate derivatives were designed by contacting bis-substituted aryl scaffolds (potential anti-tubulin fragments) with N-containing heterocycles (potential anti-tubulin fragments) in one hybrid using the anticancer dithioformate unit as the linker. The antiproliferative activity against three digestive tract tumor cells was evaluated and preliminary structure activity relationships were summarized. Among these compounds, compound 20q exhibited most potent antiproliferative activity against MGC-803, HCT-116, Kyse30 and Kyse450 cells with IC50 values of 0.084, 0.227, 0.069 and 0.078 µM, respectively. In further studies, compound 20q was identified as a novel tubulin inhibitor targeting the colchicine binding site. Compound 20q could inhibit the microtubule assembly and disrupt cytoskeleton in Kyse30 and Kyse450 cells. The results of molecular docking suggested that compound 20q could tightly bind into the colchicine binding site of tubulin by hydrogen bonds and hydrophobic interactions. Compound 20q dose-dependently inhibited the cell growth and colony formation, effectively arrested cells at the G2/M phase and induce mitochondrial apoptosis in Kyse30 and Kyse450 cells. In addition, Compound 20q could regulate the expression of G2/M phase and mitochondrial apoptosis related proteins. Collectively, compound 20q was here reported as a novel tubulin inhibitor with potential anticancer activities.


Subject(s)
Amides/chemistry , Antineoplastic Agents/chemical synthesis , Colchicine/chemistry , Thiocarbamates/chemical synthesis , Tubulin Modulators/chemical synthesis , Tubulin/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Polymerization , Protein Binding , Signal Transduction , Structure-Activity Relationship , Thiocarbamates/pharmacology , Tubulin Modulators/pharmacology
6.
Cell Prolif ; 54(1): e12919, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33129231

ABSTRACT

OBJECTIVES: Targeting the deubiquitinases (DUBs) has become a promising avenue for anti-cancer drug development. However, the effect and mechanism of pan-DUB inhibitor, PR-619, on oesophageal squamous cell carcinoma (ESCC) cells remain to be investigated. MATERIALS AND METHODS: The effect of PR-619 on ESCC cell growth and cell cycle was evaluated by CCK-8 and PI staining. Annexin V-FITC/PI double staining was performed to detect apoptosis. LC3 immunofluorescence and acridine orange staining were applied to examine autophagy. Intercellular Ca2+ concentration was monitored by Fluo-3AM fluorescence. The accumulation of ubi-proteins and the expression of the endoplasmic reticulum (ER) stress-related protein and CaMKKß-AMPK signalling were determined by immunoblotting. RESULTS: PR-619 could inhibit ESCC cell growth and induce G2/M cell cycle arrest by downregulating cyclin B1 and upregulating p21. Meanwhile, PR-619 led to the accumulation of ubiquitylated proteins, induced ER stress and triggered apoptosis by the ATF4-Noxa axis. Moreover, the ER stress increased cytoplasmic Ca2+ and then stimulated autophagy through Ca2+ -CaMKKß-AMPK signalling pathway. Ubiquitin E1 inhibitor, PYR-41, could reduce the accumulation of ubi-proteins and alleviate ER stress, G2/M cell cycle arrest, apoptosis and autophagy in PR-619-treated ESCC cells. Furthermore, blocking autophagy by chloroquine or bafilomycin A1 enhanced the cell growth inhibition effect and apoptosis induced by PR-619. CONCLUSIONS: Our findings reveal an unrecognized mechanism for the cytotoxic effects of general DUBs inhibitor (PR-619) and imply that targeting DUBs may be a potential anti-ESCC strategy.


Subject(s)
Aminopyridines/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Esophageal Neoplasms/drug therapy , Esophageal Squamous Cell Carcinoma/drug therapy , Thiocyanates/pharmacology , Ubiquitination/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Humans , Protein Aggregates/drug effects , Tumor Cells, Cultured , Ubiquitin/antagonists & inhibitors , Ubiquitin/metabolism
7.
Environ Sci Pollut Res Int ; 26(30): 31449-31462, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31478172

ABSTRACT

Bioelectrochemical systems (BESs) have great potential for treating wastewater containing polycyclic aromatic hydrocarbons (PAHs); however, detailed data on cell physiological activities in PAH biodegradation pathways stimulated by BESs are still lacking. In this paper, a novel BES device was assembled to promote the growth of Pseudomonas sp. DGYH-12 in phenanthrene (PHE) degradation. The results showed that in the micro-electric field (0.2 V), cell growth rate and PHE degradation efficiency were 22% and 27.2% higher than biological control without electric stimulation (BC), respectively. The extracellular polymeric substance (EPS) concentration in BES (39.38 mg L-1) was higher than control (33.36 mg L-1); moreover, the membrane permeability and ATPase activities were also enhanced and there existing phthalic acid and salicylic acid metabolic pathways in the strain. The degradation genes nahAc, pcaH, and xylE expression levels were upregulated by micro-electric stimulation. This is the first study to analyze the physiological and metabolic effect of micro-electric stimulation on a PHE-degrading strain in detail and systematically.


Subject(s)
Biodegradation, Environmental , Phenanthrenes/metabolism , Pseudomonas/metabolism , Waste Disposal, Fluid/methods , Electric Stimulation , Extracellular Polymeric Substance Matrix , Metabolic Networks and Pathways , Polycyclic Aromatic Hydrocarbons/metabolism , Wastewater
8.
Bioorg Chem ; 92: 103190, 2019 11.
Article in English | MEDLINE | ID: mdl-31465969

ABSTRACT

A series of novel indoline derivatives were synthesized and evaluated for antiproliferative activity against four selected cancer cell lines (Hela, A549, HepG2 and KYSE30). Among them, compound 20 displayed the potent inhibition activity against esophageal cancer cells (Kyse30, Kyse450, Kyse510 and EC109). Cellular mechanism studies in esophageal squamous cell carcinoma (ESCC) cells elucidated compound 20 inhibited cell growths in vitro and in vivo, reduced colony formation, arrested cell cycle at M phase, and induced Noxa-dependent apoptosis in ESCC. Importantly, compound 20 was identified as a novel Noxa mediated apoptosis inducer. These results suggested that compound 20 might be a promising anticancer agent with potential for development of further clinical applications.


Subject(s)
Antineoplastic Agents/chemistry , Esophageal Neoplasms/drug therapy , Esophageal Squamous Cell Carcinoma/drug therapy , Indoles/chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Indoles/pharmacology , Molecular Structure , RNA, Small Interfering/metabolism , Structure-Activity Relationship
9.
Apoptosis ; 24(9-10): 826-836, 2019 10.
Article in English | MEDLINE | ID: mdl-31342239

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the most malignant tumors in east Asia. However, the molecular mechanism underlying its progression remains unclear. The ubiquitin-proteasome system (UPS) is a central mechanism for protein degradation and turnover. Accumulating evidence showed that more and more deubiquitinases could serve as attractive anti-cancer target. The expression of USP14 and UCH37 in esophagus squamous cell carcinoma tissues were examined by immunohistochemistry and western blot assays. Effect of b-AP15, a USP14 and UCH37 inhibitor, on ESCC cell growth was evaluated by cell viability assay. After cell lines being treated with b-AP15, cell cycle, apoptosis and the expression of related proteins were further explored to investigate the anti-ESCC mechanism of b-AP15. Results showed that deubiquitinating enzymes (DUBs) USP14 and UCH37 expressed at higher levels in ESCC tissues than in adjacent tissues. b-AP15 could inhibit cell proliferation and induce G2/M cell cycle arrest and apoptosis in ESCC cells. Mechanistically, b-AP15 treatment triggered Noxa-dependent apoptosis, which was regulated by c-Myc. Silencing Noxa and c-Myc could reduce b-AP15-induced apoptosis in ESCC cells. Our results revealed a novel mechanism of anti-tumor activity of b-AP15 in ESCC, and b-AP15 could be used as a potential therapeutic agent in ESCC.


Subject(s)
Apoptosis/drug effects , Esophageal Squamous Cell Carcinoma/drug therapy , Piperidones/pharmacology , Ubiquitin Thiolesterase/metabolism , Anticarcinogenic Agents/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA-Binding Proteins/genetics , Esophageal Neoplasms/drug therapy , Gene Silencing , Humans , Proto-Oncogene Proteins c-bcl-2/genetics , Transcription Factors/genetics , Ubiquitin Thiolesterase/drug effects
10.
Mol Carcinog ; 58(1): 42-54, 2019 01.
Article in English | MEDLINE | ID: mdl-30182448

ABSTRACT

Increasing evidence suggests that deubiquitinase USP7 participates in tumor progression by various mechanisms and serves as a potential therapeutic target. However, its expression and role in esophageal cancer remains elusive; the anti-cancer effect by targeting USP7 still needs to be investigated. Here, we reported that USP7 was overexpressed in esophageal squamous cell carcinoma (ESCC) tissues compared with adjacent tissues, implying that USP7 was an attractive anticancer target of ESCC. Pharmaceutical or genetic inactivation of USP7 inhibited esophageal cancer cells growth in vitro and in vivo and induced apoptosis. Mechanistically, inhibition of USP7 accumulated poly-ubiquitinated proteins, activated endoplasmic reticulum stress, and increased expression of ATF4, which transcriptionally upregulated expression of NOXA and induced NOXA-mediated apoptosis. These results provide an evidence for clinical investigation of USP7 inhibitors for the treatment of ESCC.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell/pathology , Cell Proliferation , Esophageal Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Ubiquitin-Specific Peptidase 7/metabolism , Animals , Biomarkers, Tumor , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Case-Control Studies , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/metabolism , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Prognosis , Proto-Oncogene Proteins c-bcl-2/genetics , Thiophenes/pharmacology , Tumor Cells, Cultured , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Ubiquitin-Specific Peptidase 7/genetics , Xenograft Model Antitumor Assays
11.
Oncotarget ; 8(16): 27471-27480, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-28460467

ABSTRACT

In current study, we investigated the anti-tumor effect of luteolin in human ESCC cell lines in vitro and in vivo and tried to explore the potential mechanisms. Results from flow cytometry showed that luteolin could induce apoptosis and caspase-3 activation and induce cell cycle arrest at G2/M phase in a dose- and time-dependent manner in EC1 and KYSE450 cells. JC-1 test results showed that membrane potential of mitochondria after luteolin treatment was down-regulated and this was an indicator for intrinsic apoptosis. Western Blot results showed the expression of cell cycle regulatory protein p21 and p53 increased and three apoptosis related proteins that participate in mitochondrial apoptotic pathway, namely, Bim, CYT-c and cPARP, also increased in luteolin treated cells compared with control groups. We further confirmed that luteolin could significantly inhibit the growth of ESCC tumors in xenograft mouse models and no evidence of systemic toxicity was observed. Our results suggest that luteolin can induce cell apoptosis and cell cycle arrest in G2/M phase through mitochondrial pathway in EC1 and KYSE450 cell lines and proper utilization of luteolin might be a practical approach in ESCC chemotherapy.


Subject(s)
Apoptosis/drug effects , Luteolin/pharmacology , Membrane Potential, Mitochondrial/drug effects , Animals , Bcl-2-Like Protein 11/genetics , Bcl-2-Like Protein 11/metabolism , Caspase 3/metabolism , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Disease Models, Animal , Esophageal Neoplasms , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
12.
J Chromatogr A ; 1167(1): 109-15, 2007 Oct 05.
Article in English | MEDLINE | ID: mdl-17804001

ABSTRACT

Capillary electrophoresis coupled with electrochemical detection (CE-EC) for determination of antioxidants, propyl gallate (PG) and tert-butylhydroquinone (TBHQ), in cosmetic samples was proposed in this work. A porous etched joint was used to isolate the electrochemical detection from the electrophoretic high voltage. Compared with the 25 microm i.d. capillary without a decoupler in a CE-EC system, a 75 microm i.d. capillary applied in the present system gave an improvement in both sample injection and sensitivity. Moreover, the carbon fiber working electrode could be directly in touch with the end of separation capillary due to the elimination of the effect of separation voltage on the EC detection, so the alignment of working electrode and capillary became easy and the dead volume was also decreased. Baseline separation of the two antioxidants was achieved by CE in a 50 cm long x 75 microm i.d. capillary at 20 kV using 5.0 mmol L(-1) phosphate buffer (pH 8.00). 0.7 V (versus Ag/AgCl) was applied to the carbon fiber electrode for electrochemical detection. Under the optimal condition, the precisions (RSD, n=4) of peak height and migration time of PG and TBHQ were 2.39-3.59% and 0.34-0.44%, respectively. The detection limits of PG and TBHQ were 2.51x10(-6) and 4.88 x 10(-6) mol L(-1) for standard solution and 0.0751 and 0.0328 mg g(-1) for the real cosmetic samples with consumption of 0.3g sample. Analysis of TBHQ and PG in cosmetics samples was also achieved with the present system and the spiked recoveries of two analytes in cosmetics samples were in the range of 93.6-98.8%.


Subject(s)
Antioxidants/analysis , Chromatography, Micellar Electrokinetic Capillary/methods , Cosmetics/chemistry , Electrochemistry/methods , Carbon , Carbon Fiber , Cosmetics/analysis , Equipment Design , Hydrogen-Ion Concentration , Hydroquinones/analysis , Microelectrodes , Molecular Structure , Porosity , Propyl Gallate/analysis , Sensitivity and Specificity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...