Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 200: 300-306, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31036188

ABSTRACT

In this work, the low-cost nitrogen-doped graphene-like mesoporous nanosheets (N-GMNs) was synthesized from the biomass waste of okara for the first time for the construction of a nonenzymatic amperometric vitamin C biosensor. The N-GMNs modified glassy carbon electrode (N-GMNs/GCE) shows much lower overpotential for the electrooxidation of vitamin C comparing to the traditional GCE as well as the GCE modified by carbon nanotubes (CNTs/GCE), indicating the promising of N-GMNs/GCE for the sensitive and selective nonenzymatic amperometric vitamin C biosensing. As a nonenzymatic amperometric biosensor for vitamin C, the N-GMNs/GCE shows a higher sensitivity (144.65 µA mM-1 cm-2), a wider linear range (10-5640 µmol L-1) and a lower detection limit (0.51 µmol L-1) than GCE, CNTs/GCE or some of recently reported nanomaterials-based electrochemical vitamin C biosensors. Especially, the vitamin C concentration in real samples of commercial beverage, vitamin C injection and commercial juice can be determined by the proposed N-GMNs/GCE with satisfied results. Therefore, the utilization of okara as the raw material for the synthesis of nanostructured carbon of N-GMNs is a green method to fabricate an advanced and low-cost electrode material for developing the nonenzymatic electrochemical biosensor for vitamin C detection.


Subject(s)
Ascorbic Acid/analysis , Graphite/chemistry , Nanostructures/chemistry , Nitrogen/chemistry , Waste Products/analysis , Biomass , Biosensing Techniques/economics , Electrochemical Techniques/economics , Electrodes , Graphite/economics , Nanostructures/economics , Nitrogen/economics , Particle Size , Porosity , Surface Properties , Water/chemistry
2.
Mikrochim Acta ; 186(4): 217, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30840134

ABSTRACT

The published version of this article, unfortunately, contains error. The authors regret that one typo was present in the first author name "Cuxing Xu" when it should be "Cuixing Xu".

3.
Anal Chim Acta ; 1047: 36-44, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30567662

ABSTRACT

In this work, the low-cost carbon nanorods assembled hierarchical meso-macroporous carbons networks aerogels (CNs-HMCNAs) was environment-friendly synthesized from a cheap and abundant biomass of apples (Malus pumila Mill) for the first time. The biomass of apples derived CNs-HMCNAs exhibited the unique hierarchical meso-macroporous structure with large specific surface area and high density of edge defective sites. At the CNs-HMCNAs modified GCE (CNs-HMCNAs/GCE), the electron transfer between the glassy carbon electrode (GCE) and the ascorbic acid (AA) (or hydrogen peroxide (H2O2)) was effectively enhanced, and thus induced a low overvoltage for AA electrooxidation (or H2O2 electroreduction). As an electrochemical AA (or H2O2) sensor, the CNs-HMCNAs/GCE exhibited wider linear range, lower detection limit, higher sensitivity and stability than GCE and the carbon nanotubes modified GCE (CNTs/GCE). In particular, the CNs-HMCNAs/GCE showed great potential feasibility in the practical determination of AA (in AA injection, Vitamin C tablet and kiwi juice) or H2O2 (in human urine, milk and beer).


Subject(s)
Ascorbic Acid/analysis , Carbon/chemistry , Gels/chemistry , Hydrogen Peroxide/urine , Malus/chemistry , Nanotubes, Carbon/chemistry , Actinidia/chemistry , Animals , Beer/analysis , Biomass , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Fruit and Vegetable Juices/analysis , Green Chemistry Technology/methods , Humans , Limit of Detection , Milk/chemistry , Porosity
4.
Mikrochim Acta ; 185(10): 474, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30242490

ABSTRACT

Mesoporous carbon nanorods (MCNRs) were prepared from honey as the carbon source and by using crab (Brachyuran) shells as the hard template. The unique nanostructure of the MCNRs with their uniform mesoporous size, abundant defective sites and numerous oxygen-functional groups was characterized by nitrogen adsorption-desorption isotherms, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Cyclic voltammograms of a glassy carbon electrode (GCE) modified with MCNRs revel a higher peak current density and lower peak potential (-0.03 V vs. Ag/AgCl) for ascorbic acid (AA) electrooxidation compared to a conventional GCE and a carbon nanotube-modified GCE. Figures of merit for this sensor include (a) a wide linear range (10-2770 µM), (b) high electrochemical sensitivity (216.91 µA mM-1 cm-2) and (c) a low detection limit (2.3 µM). These compare favorably to the respective data for a CNT-modified GCE (50-2150 µM, 5.20 µA mM-1 cm-2 and 26.8 µM) and a plain GCE (100-2000 µM, 0.58 µA mM-1 cm-2 and 54.6 µM). The modified GCE was successfully applied to the determination of AA in (spiked) real samples including an injection, soft drinks and fresh lemon juice. Therefore, the new sensor can be considered as an affordable tool for electrochemical sensing of AA in real samples. Graphical abstract Mesoporous carbon nanorods (MCNRs) were prepared by using honey as the carbon source and crab shells as the hard template. The MCNRs modified a glassy carbon electrode (MCNRs/GCE) was used for the ascorbic acid (AA) detection by amperometry.

5.
Mikrochim Acta ; 185(10): 482, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30259193

ABSTRACT

The authors describe a method for synthesis of a three-dimensional (3D) interconnected carbon nanorod aerogel (3D-ICNA) starting from wax gourd (Benincasa hispida) which is a low-cost biomass. The 3D-ICNA possesses unique 3D interconnected and porous nanostructure, with abundant edge-plane-like defective sites, a large specific surface area (823 m2 g-1) and a large pore volume (0.12 cm3 g-1). This makes the material attractive in terms of electrochemical sensing. To validate the feasibility, the voltammetric response towards ferricyanide, hydrogen peroxide (H2O2), acetaminophen, ascorbic acid (AA), dopamine, uric acid and epinephrine was investigated by using a glassy carbon electrode (GCE) modified with 3D-ICNA. The modified GCE shows higher electron-transfer capacity than a conventional GCE. In addition, as an electrochemical sensor for AA or H2O2, the electrode exhibits better analytical performance with lower detection limit [3.5 µM for AA or 0.68 µM for H2O2 based on 3σ/m criterion (where σ is the standard deviation of the blank and m is the slope of the calibration plot)], wider linear range and higher sensitivity (0.14, 0.11 and 0.080 µA µM-1 cm-2 for AA or 0.24 and 0.20 µA µM-1 cm-2 for H2O2) compared to a plain GCE or a carbon nanotube-modified GCE. The modified GCE exhibits a large potential for the amperometric determination of AA or H2O2 in real samples. Graphical abstract By employing the biomass of wax gourd (Benincasa hispida) as the precursor, a three-dimensional interconnected carbon nanorod aerogel was prepared. It is shown to be a viable material for the construction of an advanced electrochemical sensor for H2O2 and ascorbic acid.

6.
Anal Chim Acta ; 1003: 16-25, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29317025

ABSTRACT

In this paper, kelp (Laminaria japonica), as a kind of abundant biomass, is used as the precursor for the preparation of kelp-derived hierarchical meso-macroporous carbons (K-dHMMCs) through the carbonization under nitrogen (N2) atmosphere at high temperature. The K-dHMMCs exhibits the unique structure with high specific surface area of 416.02 m2 g-1, large pore volume of 0.24 cm3 g-1, the hierarchical meso-macroporous size distribution centered at 2, 12 and 82 nm and high density of defective sites, enabling K-dHMMCs attractive for the electrocatalysis. Drop-casting K-dHMMCs on the glassy carbon (GC) surface allows the construction of K-dHMMCs based electrochemical sensing platform, which shows electrocatalytic activities towards many electroactive molecules, such as potassium ferricyanide, nicotinamide adenine dinucleotide (NADH), hydrogen peroxide (H2O2), dopamine (DA), uric acid (UA), ascorbic acid (AA), epinephrine (EP), l-tyrosine (Tyr) and acetaminophen (APAP). Especially, the K-dHMMCs modified GC (K-dHMMCs/GC) electrode exhibits higher sensitivity, wider linear range, and lower detection limit than both carbon nanotubes modified GC (CNTs/GC) and GC electrodes for H2O2 detection, which makes the K-dHMMCs/GC electrode to be able to determine the H2O2 levels in human urine sample and monitor the H2O2 released from human cancer cells. These results demonstrate that K-dHMMCs/GC possesses a great potential for conventional electrochemical sensing applications.


Subject(s)
Carbon/chemistry , Electrochemistry/instrumentation , Laminaria/chemistry , Catalysis , Electrodes , HeLa Cells , Humans , Hydrogen Peroxide/metabolism , NAD/metabolism , Porosity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...