Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 314: 120268, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36167163

ABSTRACT

Goethite is a commonly found iron (hydr)oxide in soils and sediments that has been proven to possess abundant defects in structures. However, the underlying impact of these defects in goethite on arsenic immobilization remains unclear. In this study, goethite samples with abundant, moderate, and sparse defects were synthesized to evaluate their arsenic adsorption capacities. The characteristics of the defects in goethite were investigated by extended X-ray absorption fine structure (EXAFS), high angle annular dark field-scanning transmission electron microscopy-energy dispersion spectrum (HAADF-STEM-EDS) mapping, vibrating-sample magnetometry (VSM), and electron spin resonance (ESR). The characterization analysis revealed that the defects in as-synthesized goethite primarily existed in the form of Fe vacancies. Batch experiments demonstrated that the adsorption capacities of defect-rich goethite for As(V) and As(III) removal were 10.2 and 22.1 times larger than those of defect-poor goethite, respectively. The origin of the impact of Fe defects on arsenic immobilization was theoretically elucidated using density functional theory (DFT) calculations. The enhanced adsorption of goethite was attributed to the improvement of the arsenic affinity due to the Fe vacancy defect, thus considerably promoting arsenic immobilization. The findings of this study provide important insight into the migration and fate of arsenic in naturally occurring iron (hydr)oxides.


Subject(s)
Arsenic , Iron Compounds , Arsenic/analysis , Adsorption , Iron Compounds/chemistry , Minerals/chemistry , Iron/chemistry , Oxides/analysis , Soil , Ferric Compounds/chemistry
2.
Environ Pollut ; 238: 524-531, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29605612

ABSTRACT

Cryptomelane-type octahedral molecular sieve manganese oxide (OMS-2) possesses high redox potential and has attracted much interest in its application for oxidation arsenite (As(III)) species of arsenic to arsenate (As(V)) to decrease arsenic toxicity and promote total arsenic removal. However, coexisting ions such as As(V) and phosphate are ubiquitous and readily bond to manganese oxide surface, consequently passivating surface active sites of manganese oxide and reducing As(III) oxidation. In this study, we present a novel strategy to significantly promote As(III) oxidation activity of OMS-2 by tuning K+ concentration in the tunnel. Batch experimental results reveal that increasing K+ concentration in the tunnel of OMS-2 not only considerably improved As(III) oxidation kinetics rate from 0.027 to 0.102 min-1, but also reduced adverse effect of competitive ion on As(III) oxidation. The origin of K+ concentration effect on As(III) oxidation was investigated through As(V) and phosphate adsorption kinetics, detection of Mn2+ release in solution, surface charge characteristics, and density functional theory (DFT) calculations. Experimental results and theoretical calculations confirm that by increasing K+ concentration in the OMS-2 tunnel not only does it improve arsenic adsorption on K+ doped OMS-2, but also accelerates two electrons transfers from As(III) to each bonded Mn atom on OMS-2 surface, thus considerably improving As(III) oxidation kinetics rate, which is responsible for counteracting the adverse adsorption effects by coexisting ions.


Subject(s)
Arsenites/chemistry , Manganese Compounds/chemistry , Models, Chemical , Oxides/chemistry , Potassium/chemistry , Adsorption , Arsenates , Arsenic/chemistry , Arsenites/analysis , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...