Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heart Surg Forum ; 21(1): E009-E017, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29485957

ABSTRACT

BACKGROUND: Right ventricular (RV) dysfunction after pulmonary resection in the early postoperative period is documented by reduced RV ejection fraction and increased RV end-diastolic volume index. Supraventricular arrhythmia, particularly atrial fibrillation, is common after pulmonary resection. RV assessment can be done by non-invasive methods and/or invasive approaches such as right cardiac catheterization. Incorporation of a rapid response thermistor to pulmonary artery catheter permits continuous measurements of cardiac output, right ventricular ejection fraction, and right ventricular end-diastolic volume. It can also be used for right atrial and right ventricular pacing, and for measuring right-sided pressures, including pulmonary capillary wedge pressure. METHODS: This study included 178 patients who underwent major pulmonary resections, 36 who underwent pneumonectomy assigned as group (I) and 142 who underwent lobectomy assigned as group (II). The study was conducted at the cardiothoracic surgery department of Benha University hospital in Egypt; patients enrolled were operated on from February 2012 to February 2016. A rapid response thermistor pulmonary artery catheter was inserted via the right internal jugular vein. Preoperatively the following was recorded: central venous pressure, mean pulmonary artery pressure, pulmonary capillary wedge pressure, cardiac output, right ventricular ejection fraction and volumes. The same parameters were collected in fixed time intervals after 3 hours, 6 hours, 12 hours, 24 hours, and 48 hours postoperatively. RESULTS: For group (I): There were no statistically significant changes between the preoperative and postoperative records in the central venous pressure and mean arterial pressure; there were no statistically significant changes in the preoperative and 12, 24, and 48 hour postoperative records for cardiac index; 3 and 6 hours postoperative showed significant changes. There were statistically significant changes between the preoperative and postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index, in all postoperative records. For group (II): There were no statistically significant changes between the preoperative and all postoperative records for the central venous pressure, mean arterial pressure and cardiac index. There were statistically significant changes between the preoperative and postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index in all postoperative records. There were statistically significant changes between the two groups in all postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index. CONCLUSION: There is right ventricular dysfunction early after major pulmonary resection caused by increased right ventricular afterload. This dysfunction is more present in pneumonectomy than in lobectomy. Heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction, and right ventricular end diastolic volume index are significantly affected by pulmonary resection.


Subject(s)
Cardiac Output/physiology , Pneumonectomy/adverse effects , Pulmonary Wedge Pressure/physiology , Vascular Resistance/physiology , Ventricular Dysfunction, Right/etiology , Ventricular Function, Right/physiology , Female , Follow-Up Studies , Humans , Lung Diseases/surgery , Male , Middle Aged , Postoperative Period , Time Factors , Ventricular Dysfunction, Right/physiopathology
2.
J Cardiothorac Surg ; 12(1): 72, 2017 Aug 29.
Article in English | MEDLINE | ID: mdl-28851442

ABSTRACT

BACKGROUND: Pectus Excavatum (PEx) is the most common congenital chest wall deformity, accounting for over 90% of all chest wall deformities. Surgical correction is recommended because severe PEx can affect the physical and psychological development of patients. The aim of our study was to assess the impact of surgical repair of Pectus Excavatum in adults during hospital course and results after 1 year. METHODS: Prospective study was carried out on 86 adult patients aged ≥ 15 years, 52 males and 34 females (mean age was 26 ± 1.5 years). All cases were divided into two groups, group I: (15-25 years old) and group II: (> 25 years old). Preoperative, operative, and postoperative data were reviewed. Statistical analysis was performed. RESULTS: Statistical analyses revealed significant improvement postoperatively of cosmetic satisfaction (P-value < 0.0001), pain (P-value =0.0003), exertional dyspnea (p-value <0.05) and exercise tolerance. The degree of chest compression was significantly improved after surgical correction within 12 months and the estimated measurement postoperatively of Haller Index showed significant reduction (p-value <0.001). Patient satisfaction postoperatively was excellent in 77.9% of all cases. CONCLUSION: Surgical correction of Pectus Excavatum using open technique in adults had excellent post-operative outcome in the short term follow up that encourage performing the procedure for all cases. Long term results need longer period for follow up. Etiology and predisposing factors still need further research.


Subject(s)
Funnel Chest/surgery , Thoracic Wall/surgery , Thoracoplasty/methods , Adolescent , Adult , Female , Humans , Male , Middle Aged , Patient Satisfaction , Prospective Studies , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...