Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Clin Gastroenterol ; 55(2): 134-140, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32501868

ABSTRACT

BACKGROUND AND OBJECTIVE: OPRX-106 is an orally administered BY2 plant cell-expressing recombinant TNF fusion protein (TNFR). Oral administration of OPRX-106 was shown to be safe and effective in inducing favorable anti-inflammatory immune modulation in humans. The current study was aimed at determining the safety and efficacy of OPRX-106 in patients with ulcerative colitis (UC). METHODS: Twenty-five patients with active mild-to-moderate UC were enrolled in an open-label trial. Patients were randomized to receive 2 or 8 mg of OPRX-106 administered orally once daily, for 8 weeks. Patients were monitored for safety and efficacy including clinical response or clinical remission, based on the Mayo score. The histopathological improvement in Geboes score, calprotectin level and hs-CRP, and exploratory immune parameters by means of fluorescence-activated cell sorting and cytokine levels were monitored. RESULTS: Oral administration of OPRX-106 was found to be safe and well tolerated without absorption into the circulation. Out of 24 patients, 18 completed the trial. The analysis of the patients completing treatment demonstrated clinical efficacy as measured by clinical response or remission in 67% and 28%, respectively. Reduction in calprotectin levels and improved Geboes score were noted in the majority of the treated patients. The beneficial clinical effect was associated with an increase in a CD4+CD25+FoxP3 subset of suppressor lymphocytes and a reduction in interleukin 6 and interferon gamma serum levels. CONCLUSIONS: Oral administration of the nonabsorbable OPRX-106 is safe and effective in mild-to-moderate UC, and not associated with immune suppression, while inducing favorable anti-inflammatory immune modulation.


Subject(s)
Colitis, Ulcerative , Colitis, Ulcerative/drug therapy , Humans , Leukocyte L1 Antigen Complex , Recombinant Fusion Proteins , Remission Induction , Treatment Outcome , Tumor Necrosis Factor Inhibitors , Tumor Necrosis Factor-alpha
2.
Front Plant Sci ; 11: 607174, 2020.
Article in English | MEDLINE | ID: mdl-33324440

ABSTRACT

While plant cells in suspension are becoming a popular platform for expressing biotherapeutic proteins, the need to pre-engineer these cells to better comply with their role as host cell lines is emerging. Heterologous DNA and selectable markers are used for transformation and genome editing designated to produce improved host cell lines for overexpression of recombinant proteins. The removal of these heterologous DNA and selectable markers, no longer needed, can be beneficial since they limit additional gene stacking in subsequent transformations and may pose excessive metabolic burden on the cell machinery. In this study we developed an innovative stepwise methodology in which the CRISPR-Cas9 is used sequentially to target genome editing, followed by its own excision. The first step included a stable insertion of a CRISPR-Cas9 cassette, targeted to knockout the ß(1,2)-xylosyltranferase (XylT) and the α(1,3)-fucosyltransferase (FucT) genes in Nicotiana tabacum L. cv Bright Yellow 2 (BY2) cell suspension. The second step included the excision of the inserted cassette of 14.3 kbp by induction of specific sgRNA designed to target the T-DNA boundaries. The genome editing step and the transgene removal step are achieved in one transformation run. This mechanism enables CRISPR genome editing and subsequently eliminating the introduced transgenes thus freeing the cells from foreign DNA no longer needed.

3.
Bioconjug Chem ; 29(5): 1630-1639, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29698600

ABSTRACT

The current treatment of Fabry disease by enzyme replacement therapy with commercially available recombinant human α-Galactosidase A shows a continuous deterioration of the disease patients. Human recombinant α-Galactosidase A is a homodimer with noncovalently bound subunits and is expressed in the ProCellEx plant cell-based protein expression platform to produce pegunigalsidase alfa. The effect of covalent bonding between two α-Galactosidase A subunits by PEG-based cross-linkers of various lengths was evaluated in this study. The results show that cross-linking by a bifunctional PEG polymer of 2000 Da produces a more stable protein with improved pharmacokinetic and biodistribution properties. The chemical modification did not influence the tertiary protein structure but led to an increased thermal stability and showed partial masking of immune epitopes. The developed pegunigalsidase alfa is currently tested in phase III clinical trials and has a potential to show superior efficacy versus the currently used enzyme replacement therapies in the treatment of Fabry disease patients.


Subject(s)
Cross-Linking Reagents/chemistry , Polyethylene Glycols/chemistry , alpha-Galactosidase/chemistry , Animals , Cell Line , Enzyme Stability , Fabry Disease/drug therapy , Humans , Mice , Models, Molecular , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/therapeutic use , Tissue Distribution , Nicotiana/genetics , alpha-Galactosidase/genetics , alpha-Galactosidase/pharmacokinetics , alpha-Galactosidase/therapeutic use
4.
J Immunol Methods ; 446: 21-29, 2017 07.
Article in English | MEDLINE | ID: mdl-28392436

ABSTRACT

BACKGROUND: An orally administered BY-2 plant cell-expressed recombinant anti-TNF fusion protein (PRX-106) consists of the soluble form of the human TNF receptor (TNFR) fused to the Fc component of a human IgG1 domain. Aim This study aim at determining the safety and the immune modulatory effect of an oral administration of PRX-106 in humans. METHODS: Three different doses (2, 8 or 16mg/day) of PRX-106 were orally administered for five consecutive days in 14 healthy volunteered participants. Subjects were followed for safety parameters and for an effect on T lymphocytes subsets and cytokine levels. RESULTS: An oral administration of PRX-106 was safe and well tolerated. The PK study showed that PRX106 is not absorbed. No effect on white blood cells and lymphocytes counts were noted. A dose dependent effect was noted on systemic lymphocytes. The oral administration of all three dosages was associated with an increase in CD4+CD25+ and CD8+CD25+ subset of suppressor lymphocytes. A marked increase in CD4+CD25+FoxP3 regulatory T cells was noted in the 8mg treated group. In addition, NKT regulatory cells, CD3+CD69+ and CD4+CD62 lymphocyte subsets increased with treatment. No changes in serum TNF alpha were observed. CONCLUSION: An oral administration of the non-absorbable recombinant anti-TNF fusion protein, PRX-106, is safe, not associated with immune suppression, while inducing a favorable anti-inflammatory immune modulation. The PRX-106 may provide a safe orally administered effective anti-TNF alpha-based immune therapy for inflammatory bowel diseases and non-alcoholic steatohepatitis, as well as other autoimmune, TNF-mediated diseases.


Subject(s)
Etanercept/adverse effects , Etanercept/immunology , T-Lymphocytes, Regulatory/physiology , Tumor Necrosis Factor-alpha/immunology , Administration, Oral , Adolescent , Adult , Cytokines/blood , Etanercept/administration & dosage , Etanercept/blood , Humans , Immunomodulation , Immunotherapy , Inflammatory Bowel Diseases/immunology , Lymphocyte Activation , Male , Middle Aged , T-Lymphocytes, Regulatory/immunology , Tumor Necrosis Factor-alpha/metabolism , Young Adult
5.
Plant Biotechnol J ; 15(9): 1120-1129, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28160363

ABSTRACT

Plant-produced glycoproteins contain N-linked glycans with plant-specific residues of ß(1,2)-xylose and core α(1,3)-fucose, which do not exist in mammalian-derived proteins. Although our experience with two enzymes that are used for enzyme replacement therapy does not indicate that the plant sugar residues have deleterious effects, we made a conscious decision to eliminate these moieties from plant-expressed proteins. We knocked out the ß(1,2)-xylosyltranferase (XylT) and the α(1,3)-fucosyltransferase (FucT) genes, using CRISPR/Cas9 genome editing, in Nicotiana tabacum L. cv Bright Yellow 2 (BY2) cell suspension. In total, we knocked out 14 loci. The knocked-out lines were stable, viable and exhibited a typical BY2 growing rate. Glycan analysis of the endogenous proteins of these lines exhibited N-linked glycans lacking ß(1,2)-xylose and/or α(1,3)-fucose. The knocked-out lines were further transformed successfully with recombinant DNaseI. The expression level and the activity of the recombinant protein were similar to that of the protein produced in the wild-type BY2 cells. The recombinant DNaseI was shown to be totally free from any xylose and/or fucose residues. The glyco-engineered BY2 lines provide a valuable platform for producing potent biopharmaceutical products. Furthermore, these results demonstrate the power of the CRISPR/Cas9 technology for multiplex gene editing in BY2 cells.


Subject(s)
Biological Therapy , Fucose/metabolism , Glycoproteins/metabolism , Nicotiana/genetics , Xylose/metabolism , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Gene Editing , Genetic Vectors , Glycoproteins/genetics , Pentosyltransferases/genetics , Pentosyltransferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Polysaccharides , Recombinant Proteins , Nicotiana/metabolism , UDP Xylose-Protein Xylosyltransferase
6.
Immunobiology ; 222(3): 544-551, 2017 03.
Article in English | MEDLINE | ID: mdl-27832933

ABSTRACT

The orally administered BY-2 plant cell-expressed recombinant anti-TNF fusion protein (PRX-106) (n=6) consists of the soluble form of the human TNF receptor (TNFR) fused to the Fc component of a human antibody IgG1 domain. AIM: To evaluate the immune modulatory effect of the oral administration of plant cells expressing PRX-106. METHODS: Mice treated with Concanavalin A (ConA) to induce immune hepatitis was orally treated with cells expressing PRX-106 containing 0.5 or 5µg PRX 106. In the colitis model, TNBS-colitis was induced in mice followed by the oral administration of plant cells expressing PRX-106. The immune modulatory effect was determined through follow-up to assess the clinical effect, histology, and serum cytokine levels and by FACS analysis for lymphocyte subsets. RESULTS: The oral administration of BY-2 cells expressing PRX-106 alleviated immune-mediated liver injury. Serum AST and ALT levels decreased and were comparable to those of mice that had received high-dose steroids. The beneficial effect was also observed as a marked decrease in hepatic necrosis. In the colitis model, the oral administration of BY-2 plant cells expressing PRX-106 alleviated weight loss associated with immune-mediated colitis and improved bowel histology. A reduction in I-IkB-alpha phosphorylation in treated mice was also observed. These effects were associated with a significant alteration in the distribution of CD4+CD25+FOXP3+ cells. CONCLUSIONS: Plant cells expressing recombinant anti-TNF fusion protein show biological activity when orally administered, exerting an immune modulatory effect through the alleviation of immune-mediated hepatitis and immune-mediated colitis.


Subject(s)
Colitis/immunology , Hepatitis/immunology , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Recombinant Fusion Proteins/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Administration, Oral , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Biopsy , Colitis/drug therapy , Colitis/metabolism , Colitis/pathology , Cytokines/blood , Disease Models, Animal , Hepatitis/drug therapy , Hepatitis/metabolism , Hepatitis/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Mice , Plant Cells , Recombinant Fusion Proteins/administration & dosage
7.
World J Gastroenterol ; 22(39): 8760-8769, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27818591

ABSTRACT

AIM: To evaluate the immunomodulatory effect of oral administration of PRX-106 in the high-fat diet model. METHODS: For 22 wk, C57BL/6 HFD-fed mice received daily oral treatments with BY-2 cells expressing recombinant anti-tumor necrosis factor alpha fusion protein (PRX-106). Mice were followed for serum liver enzyme and triglyceride levels, liver histology and intrahepatic and systemic FACS. RESULTS: The orally administered non-absorbable PRX-106 was biologically active. Altered distribution of CD4+CD25+FoxP3+ between the liver and spleen and an increase in the intrasplenic-to-intrahepatic CD4+CD25+FoxP3+ ratio and a decrease in the intrasplenic-to-intrahepatic CD8+CD25+FoxP3+ ratio were observed. An increase in intrahepatic NKT cells and a decrease in the intrasplenic-to-intrahepatic NKT ratio were noted. Assessment of the CD4-to-CD8 ratios showed sequestration of CD8+ lymphocytes in the liver. These effects were associated with a decrease in serum triglyceride levels, decrease in the aspartate aminotransferase levels, serum glucose levels, and HOMA-IR score. A decrease in hepatic triglycerides content was observed in the high dose-treated mice. CONCLUSION: Orally administered PRX-106 shows biological activity and exerts an immunomodulatory effect, alleviating liver damage. The data suggest that PRX-106 may provide an oral immunotherapy for nonalcoholic steatohepatitis.


Subject(s)
Non-alcoholic Fatty Liver Disease/drug therapy , Recombinant Fusion Proteins/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Administration, Oral , Animals , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Flow Cytometry , Forkhead Transcription Factors/metabolism , Immunotherapy , Interleukin-2 Receptor alpha Subunit/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/metabolism , Plant Cells/metabolism , Spleen/cytology , Triglycerides/blood , Triglycerides/metabolism
9.
Plant Biotechnol J ; 13(8): 1199-208, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26102075

ABSTRACT

Protalix Biotherapeutics develops recombinant human proteins and produces them in plant cell culture. Taliglucerase alfa has been the first biotherapeutic expressed in plant cells to be approved by regulatory authorities around the world. Other therapeutic proteins are being developed and are currently at various stages of the pipeline. This review summarizes the major milestones reached by Protalix Biotherapeutics to enable the development of these biotherapeutics, including platform establishment, cell line selection, manufacturing process and good manufacturing practice principles to consider for the process. Examples of the various products currently being developed are also presented.


Subject(s)
Cell Culture Techniques/methods , Drug Industry , Plant Cells/metabolism , Recombinant Proteins/biosynthesis , Bioreactors , Glycosylation , Humans , Recombinant Proteins/immunology
10.
Toxicol Appl Pharmacol ; 287(3): 202-9, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26051873

ABSTRACT

PRX-105 is a plant-derived recombinant version of the human 'read-through' acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50nmol/kg PRX-105, 2min before being exposed to 1.33×LD50 and 1.5×LD50 of toxin and 10min after exposure to 1.5×LD50 survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t½) in mice was 994 (±173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t½ in humans was substantially longer than in mice (average 26.7h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation.


Subject(s)
Acetylcholinesterase/pharmacology , Antidotes/pharmacology , Organophosphate Poisoning/drug therapy , Organophosphate Poisoning/prevention & control , Polyethylene Glycols/chemistry , Acetylcholinesterase/administration & dosage , Acetylcholinesterase/adverse effects , Acetylcholinesterase/chemistry , Acetylcholinesterase/pharmacokinetics , Adult , Animals , Antidotes/administration & dosage , Antidotes/adverse effects , Antidotes/chemistry , Antidotes/pharmacokinetics , Chemistry, Pharmaceutical , Disease Models, Animal , Female , GPI-Linked Proteins/administration & dosage , GPI-Linked Proteins/adverse effects , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/pharmacokinetics , GPI-Linked Proteins/pharmacology , Half-Life , Humans , Injections, Intravenous , Israel , Male , Mice, Inbred BALB C , Middle Aged , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/adverse effects , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/pharmacology , Recombinant Proteins , Swine , Swine, Miniature , Young Adult
11.
Plant Biotechnol J ; 13(8): 1033-40, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25828481

ABSTRACT

Gaucher's disease (GD), a lysosomal storage disorder caused by mutations in the gene encoding glucocerebrosidase (GCD), is currently treated by enzyme replacement therapy (ERT) using recombinant GCD that is administered intravenously every 2 weeks. However, intravenous administration includes discomfort or pain and might cause local and systemic infections that may lead to low patient compliance. An orally administered drug has the potential to alleviate these problems. In this study, we describe the potential use of plant cells as a vehicle for the oral delivery of recombinant human GCD (prGCD) expressed in carrot cells. The in vitro results demonstrate that the plant cells protect the recombinant protein in the gastric fluids and may enable absorption into the blood. Feeding experiments, with rat and pig as model animals, using carrot cells containing prGCD, show that active recombinant prGCD was found in the digestive tract and blood system and reached both, liver and spleen, the target organs in GD. These results demonstrate that the oral administration of proteins encapsulated in plant cells is feasible. Specifically, carrot cells containing recombinant human prGCD can be used as an oral delivery system and are a feasible alternative to intravenous administration of ERT for GD.


Subject(s)
Enzyme Replacement Therapy , Gaucher Disease/drug therapy , Glucosylceramidase/administration & dosage , Glucosylceramidase/therapeutic use , Nicotiana/metabolism , Administration, Oral , Animals , Body Fluids/metabolism , Caco-2 Cells , Enzyme Stability , Glucosylceramidase/pharmacokinetics , Humans , Intestinal Mucosa/metabolism , Organ Specificity , Plant Cells/metabolism , Rats , Recombinant Proteins/administration & dosage , Sus scrofa , Tissue Distribution , Transcytosis
12.
Mol Genet Metab ; 114(2): 259-67, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25155442

ABSTRACT

Fabry disease is an X-linked recessive disorder caused by the loss of function of the lysosomal enzyme α-Galactosidase-A. Although two enzyme replacement therapies (ERTs) are commercially available, they may not effectively reverse some of the Fabry pathology. PRX-102 is a novel enzyme for the therapy of Fabry disease expressed in a BY2 Tobacco cell culture. PRX-102 is chemically modified, resulting in a cross-linked homo-dimer. We have characterized the in-vitro and in-vivo properties of PRX-102 and compared the results with the two commercially produced α-Galactosidase-A enzymes. Results show that PRX-102 has prolonged in-vitro stability in plasma, after 1h incubation it retains 30% activity compared with complete inactivation of the commercial enzymes. Under lysosomal-like conditions PRX-102 maintains over 80% activity following 10 days of incubation, while commercial enzymes become inactive after 2days. Pharmacokinetic profile of PRX-102 measured in male Fabry mice shows a 10 fold increase in t1/2 in mice (581min) compared to approved drugs. The enzyme has significantly different kinetic parameters to the alternative ERTs available (p-value<0.05, one way ANOVA), although these differences do not indicate any significant biochemical variations. PRX-102 is uptaken to primary human Fabry fibroblasts. The repeat administration of the enzyme to Fabry mice caused significant reduction (p-value<0.05) of Gb3 in various tissues (the measured residual content was 64% in kidney, liver was cleaned, 23% in heart, 5.7% in skin and 16.2% in spleen). PRX-102 has a relatively simple glycosylation pattern, characteristic to plants, having mainly tri-mannose structures with the addition of either α(1-3)-linked fucose or ß(1-2)-linked xylose, or both, in addition to various high mannose structures, while agalsidase beta has a mixture of sialylated glycans in addition to high mannose structures. This study concludes that PRX-102 is equivalent in functionality to the current ERTs available, with superior stability and prolonged circulatory half-life. Therefore we propose that PRX-102 is a promising alternative for treatment of Fabry disease.


Subject(s)
Enzyme Replacement Therapy , Fabry Disease/drug therapy , alpha-Galactosidase/genetics , alpha-Galactosidase/therapeutic use , Animals , Cells, Cultured , Enzyme Stability , Heart , Isoenzymes/therapeutic use , Kidney/enzymology , Liver/enzymology , Male , Mice , Recombinant Proteins/therapeutic use , Skin/enzymology , Spleen/enzymology , Nicotiana/genetics , alpha-Galactosidase/pharmacokinetics
13.
Mol Genet Metab ; 112(1): 1-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24630271

ABSTRACT

Gaucher disease (GD) is a rare, genetic lysosomal storage disorder caused by functional defects of acid ß-glucosidase that results in multiple organ dysfunction. Glycosylation of recombinant acid human ß-glucosidase and exposure of terminal mannose residues are critical to the success of enzyme replacement therapy (ERT) for the treatment of visceral and hematologic manifestations in GD. Three commercially available ERT products for treatment of GD type 1 (GD1) include imiglucerase, velaglucerase alfa, and taliglucerase alfa. Imiglucerase and velaglucerase alfa are produced in different mammalian cell systems and require production glycosylation modifications to expose terminal α-mannose residues, which are needed for mannose receptor-mediated uptake by target macrophages. Such modifications add to production costs. Taliglucerase alfa is a plant cell-expressed acid ß-glucosidase approved in the United States and other countries for ERT in adults with GD1. A plant-based expression system, using carrot root cell cultures, was developed for production of taliglucerase alfa and does not require additional processing for postproduction glycosidic modifications. Clinical trials have demonstrated that taliglucerase alfa is efficacious, with a well-established safety profile in adult, ERT-naïve patients with symptomatic GD1, and for such patients previously treated with imiglucerase. These included significant improvements in organomegaly and hematologic parameters as early as 6months, and maintenance of achieved therapeutic values in previously treated patients. Ongoing clinical trials will further characterize the long-term efficacy and safety of taliglucerase alfa in more diverse patient populations, and may help to guide clinical decisions for achieving optimal outcomes for patients with GD1.


Subject(s)
Daucus carota/enzymology , Gaucher Disease/drug therapy , Glucosylceramidase/administration & dosage , Glucosylceramidase/pharmacokinetics , Plants/genetics , Clinical Trials as Topic , Enzyme Replacement Therapy/economics , Gaucher Disease/pathology , Glucosylceramidase/therapeutic use , Humans , Plant Cells/metabolism
14.
Biosci Rep ; 33(5)2013 Sep 25.
Article in English | MEDLINE | ID: mdl-23980545

ABSTRACT

The glycosylation of recombinant ß-glucocerebrosidase, and in particular the exposure of mannose residues, has been shown to be a key factor in the success of ERT (enzyme replacement therapy) for the treatment of GD (Gaucher disease). Macrophages, the target cells in GD, internalize ß-glucocerebrosidase through MRs (mannose receptors). Three enzymes are commercially available for the treatment of GD by ERT. Taliglucerase alfa, imiglucerase and velaglucerase alfa are each produced in different cell systems and undergo various post-translational or post-production glycosylation modifications to expose their mannose residues. This is the first study in which the glycosylation profiles of the three enzymes are compared, using the same methodology and the effect on functionality and cellular uptake is evaluated. While the major differences in glycosylation profiles reside in the variation of terminal residues and mannose chain length, the enzymatic activity and stability are not affected by these differences. Furthermore, the cellular uptake and in-cell stability in rat and human macrophages are similar. Finally, in vivo studies to evaluate the uptake into target organs also show similar results for all three enzymes. These results indicate that the variations of glycosylation between the three regulatory-approved ß-glucocerebrosidase enzymes have no effect on their function or distribution.


Subject(s)
Glucosylceramidase/metabolism , Protein Processing, Post-Translational , Animals , Biological Transport , Carbohydrate Conformation , Carbohydrate Sequence , Cell Line , Enzyme Stability , Glucosylceramidase/chemistry , Glucosylceramidase/pharmacokinetics , Glycosylation , Humans , Kinetics , Macrophages, Alveolar/enzymology , Male , Mice , Mice, Inbred ICR , Molecular Sequence Data , Rats , Recombinant Proteins/metabolism , Tissue Distribution
15.
Org Biomol Chem ; 9(11): 4160-7, 2011 Jun 07.
Article in English | MEDLINE | ID: mdl-21483943

ABSTRACT

Cyclodextrin-based host-guest chemistry has been exploited to facilitate co-crystallization of recombinant human acid ß-glucosidase (ß-glucocerebrosidase, GlcCerase) with amphiphilic bicyclic nojirimycin analogues of the sp(2)-iminosugar type. Attempts to co-crystallize GlcCerase with 5-N,6-O-[N'-(n-octyl)iminomethylidene]nojirimycin (NOI-NJ) or with 5-N,6-S-[N'-(n-octyl)iminomethylidene]-6-thionojirimycin (6S-NOI-NJ), two potent inhibitors of the enzyme with promising pharmacological chaperone activity for several Gaucher disease-associated mutations, were unsuccessful probably due to the formation of aggregates that increase the heterogeneity of the sample and affect nucleation and growth of crystals. Cyclomaltoheptaose (ß-cyclodextrin, ßCD) efficiently captures NOI-NJ and 6S-NOI-NJ in aqueous media to form inclusion complexes in which the lipophilic tail is accommodated in the hydrophobic cavity of the cyclooligosaccharide. The dissociation constant of the complex of the amphiphilic sp(2)-iminosugars with ßCD is two orders of magnitude higher than that of the corresponding complex with GlcCerase, allowing the efficient transfer of the inhibitor from the ßCD cavity to the GlcCerase active site. Enzyme-inhibitor complexes suitable for X-ray analysis were thus grown in the presence of ßCD. In contrast to what was previously observed for the complex of GlcCerase with the more basic derivative, 6-amino-6-deoxy-5-N,6-N-[N'-(n-octyl)iminomethylidene]nojirimycin (6N-NOI-NJ), the ß-anomers of both NOI-NJ and 6S-NOI-NJ were seen in the active site, even though the α-anomer was exclusively detected both in aqueous solution and in the corresponding ßCD:sp(2)-iminosugar complexes. Our results further suggest that cyclodextrin derivatives might serve as suitable delivery systems of amphiphilic glycosidase inhibitors in a biomedical context.


Subject(s)
1-Deoxynojirimycin/analogs & derivatives , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cyclodextrins/chemistry , Glucosylceramidase/chemistry , 1-Deoxynojirimycin/chemistry , Crystallography, X-Ray , Glucosylceramidase/metabolism , Hydrogen Bonding , Models, Molecular , Molecular Structure , Stereoisomerism
17.
PLoS One ; 4(3): e4792, 2009.
Article in English | MEDLINE | ID: mdl-19277123

ABSTRACT

UNLABELLED: Gaucher disease is a progressive lysosomal storage disorder caused by the deficiency of glucocerebrosidase leading to the dysfunction in multiple organ systems. Intravenous enzyme replacement is the accepted standard of treatment. In the current report, we evaluate the safety and pharmacokinetics of a novel human recombinant glucocerebrosidase enzyme expressed in transformed plant cells (prGCD), administered to primates and human subjects. Short term (28 days) and long term (9 months) repeated injections with a standard dose of 60 Units/kg and a high dose of 300 Units/kg were administered to monkeys (n = 4/sex/dose). Neither clinical drug-related adverse effects nor neutralizing antibodies were detected in the animals. In a phase I clinical trial, six healthy volunteers were treated by intravenous infusions with escalating single doses of prGCD. Doses of up to 60 Units/kg were administered at weekly intervals. prGCD infusions were very well tolerated. Anti-prGCD antibodies were not detected. The pharmacokinetic profile of the prGCD revealed a prolonged half-life compared to imiglucerase, the commercial enzyme that is manufactured in a costly mammalian cell system. These studies demonstrate the safety and lack of immunogenicity of prGCD. Following these encouraging results, a pivotal phase III clinical trial for prGCD was FDA approved and is currently ongoing. TRIAL REGISTRATION: ClinicalTrials.gov NCT00258778.


Subject(s)
Gaucher Disease/drug therapy , Glucosylceramidase/therapeutic use , Adult , Animals , Antibody Formation , Cells, Cultured/enzymology , Clinical Trials, Phase III as Topic , Daucus carota/cytology , Drug Evaluation, Preclinical , Female , Gaucher Disease/enzymology , Gaucher Disease/genetics , Glucosylceramidase/adverse effects , Glucosylceramidase/economics , Glucosylceramidase/genetics , Glucosylceramidase/immunology , Glucosylceramidase/isolation & purification , Glucosylceramidase/pharmacokinetics , Half-Life , Humans , Infusions, Intravenous , Macaca fascicularis , Male , Neutralization Tests , Recombinant Fusion Proteins/adverse effects , Recombinant Fusion Proteins/economics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/pharmacokinetics , Recombinant Fusion Proteins/therapeutic use , Transfection , Young Adult
18.
J Biol Chem ; 282(39): 29052-29058, 2007 Sep 28.
Article in English | MEDLINE | ID: mdl-17666401

ABSTRACT

Gaucher disease is caused by mutations in the gene encoding acid beta-glucosidase (GlcCerase), resulting in glucosylceramide (GlcCer) accumulation. The only currently available orally administered treatment for Gaucher disease is N-butyl-deoxynojirimycin (Zavesca, NB-DNJ), which partially inhibits GlcCer synthesis, thus reducing levels of GlcCer accumulation. NB-DNJ also acts as a chemical chaperone for GlcCerase, although at a different concentration than that required to completely inhibit GlcCer synthesis. We now report the crystal structures, at 2A resolution, of complexes of NB-DNJ and N-nonyl-deoxynojirimycin (NN-DNJ) with recombinant human GlcCerase, expressed in cultured plant cells. Both inhibitors bind at the active site of GlcCerase, with the imino sugar moiety making hydrogen bonds to side chains of active site residues. The alkyl chains of NB-DNJ and NN-DNJ are oriented toward the entrance of the active site where they undergo hydrophobic interactions. Based on these structures, we make a number of predictions concerning (i) involvement of loops adjacent to the active site in the catalytic process, (ii) the nature of nucleophilic attack by Glu-340, and (iii) the role of a conserved water molecule located in a solvent cavity adjacent to the active site. Together, these results have significance for understanding the mechanism of action of GlcCerase and the mode of GlcCerase chaperoning by imino sugars.


Subject(s)
1-Deoxynojirimycin/analogs & derivatives , Enzyme Inhibitors/chemistry , Gaucher Disease/enzymology , Glucosylceramidase/chemistry , Molecular Chaperones/chemistry , 1-Deoxynojirimycin/administration & dosage , 1-Deoxynojirimycin/chemistry , Administration, Oral , Binding Sites/physiology , Crystallography, X-Ray , Enzyme Inhibitors/administration & dosage , Gaucher Disease/drug therapy , Glucosylceramides/biosynthesis , Glucosylceramides/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Recombinant Proteins/chemistry , Structure-Activity Relationship
19.
Plant Biotechnol J ; 5(5): 579-90, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17524049

ABSTRACT

Gaucher's disease, a lysosomal storage disorder caused by mutations in the gene encoding glucocerebrosidase (GCD), is currently treated by enzyme replacement therapy using recombinant GCD (Cerezyme) expressed in Chinese hamster ovary (CHO) cells. As complex glycans in mammalian cells do not terminate in mannose residues, which are essential for the biological uptake of GCD via macrophage mannose receptors in human patients with Gaucher's disease, an in vitro glycan modification is required in order to expose the mannose residues on the glycans of Cerezyme. In this report, the production of a recombinant human GCD in a carrot cell suspension culture is described. The recombinant plant-derived GCD (prGCD) is targeted to the storage vacuoles, using a plant-specific C-terminal sorting signal. Notably, the recombinant human GCD expressed in the carrot cells naturally contains terminal mannose residues on its complex glycans, apparently as a result of the activity of a special vacuolar enzyme that modifies complex glycans. Hence, the plant-produced recombinant human GCD does not require exposure of mannose residues in vitro, which is a requirement for the production of Cerezyme. prGCD also displays a level of biological activity similar to that of Cerezyme produced in CHO cells, as well as a highly homologous high-resolution three-dimensional structure, determined by X-ray crystallography. A single-dose toxicity study with prGCD in mice demonstrated the absence of treatment-related adverse reactions or clinical findings, indicating the potential safety of prGCD. prGCD is currently undergoing clinical studies, and may offer a new and alternative therapeutic option for Gaucher's disease.


Subject(s)
Gaucher Disease/drug therapy , Glucosylceramidase/metabolism , Glucosylceramidase/therapeutic use , Polysaccharides/metabolism , Animals , Blotting, Western , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Crystallography, X-Ray , Daucus carota/cytology , Daucus carota/enzymology , Daucus carota/metabolism , Drug Evaluation, Preclinical/methods , Female , Gaucher Disease/enzymology , Gaucher Disease/genetics , Glucosylceramidase/genetics , Humans , Macrophages/metabolism , Male , Mannose/chemistry , Mannose/metabolism , Mice , Mice, Inbred ICR , Polysaccharides/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...