Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect ; 87(2): 128-135, 2023 08.
Article in English | MEDLINE | ID: mdl-37270070

ABSTRACT

OBJECTIVES: To determine how the intrinsic severity of successively dominant SARS-CoV-2 variants changed over the course of the pandemic. METHODS: A retrospective cohort analysis in the NHS Greater Glasgow and Clyde (NHS GGC) Health Board. All sequenced non-nosocomial adult COVID-19 cases in NHS GGC with relevant SARS-CoV-2 lineages (B.1.177/Alpha, Alpha/Delta, AY.4.2 Delta/non-AY.4.2 Delta, non-AY.4.2 Delta/Omicron, and BA.1 Omicron/BA.2 Omicron) during analysis periods were included. Outcome measures were hospital admission, ICU admission, or death within 28 days of positive COVID-19 test. We report the cumulative odds ratio; the ratio of the odds that an individual experiences a severity event of a given level vs all lower severity levels for the resident and the replacement variant after adjustment. RESULTS: After adjustment for covariates, the cumulative odds ratio was 1.51 (95% CI: 1.08-2.11) for Alpha versus B.1.177, 2.09 (95% CI: 1.42-3.08) for Delta versus Alpha, 0.99 (95% CI: 0.76-1.27) for AY.4.2 Delta versus non-AY.4.2 Delta, 0.49 (95% CI: 0.22-1.06) for Omicron versus non-AY.4.2 Delta, and 0.86 (95% CI: 0.68-1.09) for BA.2 Omicron versus BA.1 Omicron. CONCLUSIONS: The direction of change in intrinsic severity between successively emerging SARS-CoV-2 variants was inconsistent, reminding us that the intrinsic severity of future SARS-CoV-2 variants remains uncertain.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , SARS-CoV-2/genetics , Retrospective Studies , Hospitalization
2.
PLoS One ; 18(4): e0284187, 2023.
Article in English | MEDLINE | ID: mdl-37053201

ABSTRACT

OBJECTIVES: The SARS-CoV-2 Alpha variant was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between Alpha variant infection and increased hospitalisation and 28-day mortality. However, none have addressed the impact on maximum severity of illness in the general population classified by the level of respiratory support required, or death. We aimed to do this. METHODS: In this retrospective multi-centre clinical cohort sub-study of the COG-UK consortium, 1475 samples from Scottish hospitalised and community cases collected between 1st November 2020 and 30th January 2021 were sequenced. We matched sequence data to clinical outcomes as the Alpha variant became dominant in Scotland and modelled the association between Alpha variant infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no respiratory support, 2. supplemental oxygen, 3. ventilation and 4. death. RESULTS: Our cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (Alpha variant versus pre-Alpha variants). CONCLUSIONS: The Alpha variant was associated with more severe clinical disease in the Scottish population than co-circulating lineages.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Retrospective Studies , Scotland/epidemiology , Genomics
3.
J Clin Microbiol ; 56(3)2018 03.
Article in English | MEDLINE | ID: mdl-29263202

ABSTRACT

Whole-genome sequencing (WGS) is rapidly becoming the method of choice for outbreak investigations and public health surveillance of microbial pathogens. The combination of improved cluster resolution and prediction of resistance and virulence phenotypes provided by a single tool is extremely advantageous. However, the data produced are complex, and standard bioinformatics pipelines are required to translate the output into easily interpreted epidemiologically relevant information for public health action. The main aim of this study was to validate the implementation of WGS at the Scottish Escherichia coli O157/STEC Reference Laboratory (SERL) using the Public Health England (PHE) bioinformatics pipeline to produce standardized data to enable interlaboratory comparison of results generated at two national reference laboratories. In addition, we evaluated the BioNumerics whole-genome multilocus sequence typing (wgMLST) and E. coli genotyping plug-in tools using the same data set. A panel of 150 well-characterized isolates of Shiga toxin-producing E. coli (STEC) that had been sequenced and analyzed at PHE using the PHE pipeline and database (SnapperDB) was assembled to provide identification and typing data, including serotype (O:H type), sequence type (ST), virulence genes (eae and Shiga toxin [stx] subtype), and a single-nucleotide polymorphism (SNP) address. To validate the implementation of sequencing at the SERL, DNA was reextracted from the isolates and sequenced and analyzed using the PHE pipeline, which had been installed at the SERL; the output was then compared with the PHE data. The results showed a very high correlation between the data, ranging from 93% to 100%, suggesting that the standardization of WGS between our reference laboratories is possible. We also found excellent correlation between the results obtained using the PHE pipeline and BioNumerics, except for the detection of stx2a and stx2c when these subtypes are both carried by strains.


Subject(s)
Databases, Factual/standards , Escherichia coli Infections/microbiology , Genome, Bacterial/genetics , Information Dissemination , Molecular Epidemiology/standards , Shiga-Toxigenic Escherichia coli/genetics , Whole Genome Sequencing/standards , DNA, Bacterial/genetics , England/epidemiology , Escherichia coli Infections/epidemiology , Escherichia coli O157/genetics , Humans , Multilocus Sequence Typing , Serogroup , Shiga-Toxigenic Escherichia coli/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...