Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Neurosci ; 16: 858070, 2022.
Article in English | MEDLINE | ID: mdl-35873827

ABSTRACT

Investigating the neurocircuit and synaptic sites of action of oxytocin (OT) in the brain is critical to the role of OT in social memory and behavior. To the same degree, it is important to understand how OT is transported to the brain from the peripheral circulation. To date, of these, many studies provide evidence that CD38, CD157, and receptor for advanced glycation end-products (RAGE) act as regulators of OT concentrations in the brain and blood. It has been shown that RAGE facilitates the uptake of OT in mother's milk from the digestive tract to the cell surface of intestinal epithelial cells to the body fluid and subsequently into circulation in male mice. RAGE has been shown to recruit circulatory OT into the brain from blood at the endothelial cell surface of neurovascular units. Therefore, it can be said that extracellular OT concentrations in the brain (hypothalamus) could be determined by the transport of OT by RAGE from the circulation and release of OT from oxytocinergic neurons by CD38 and CD157 in mice. In addition, it has recently been found that gavage application of a precursor of nicotinamide adenine dinucleotide, nicotinamide riboside, for 12 days can increase brain OT in mice. Here, we review the evaluation of the new concept that RAGE is involved in the regulation of OT dynamics at the interface between the brain, blood, and intestine in the living body, mainly by summarizing our recent results due to the limited number of publications on related topics. And we also review other possible routes of OT recruitment to the brain.

2.
Nutrients ; 14(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35215455

ABSTRACT

The outcomes of supplementation with L-carnosine have been investigated in clinical trials in children with autism spectrum disorder (ASD). However, reports on the effects of L-carnosine in humans have been inconsistent, and the efficacy of L-carnosine supplementation for improving ASD symptoms has yet to be investigated in animal studies. Here, we examined the effects of oral supplementation with L-carnosine on social deficits in CD157KO mice, a murine model of ASD. Social deficits in CD157KO mice were assessed using a three-chamber social approach test. Oral supplementation with L-carnosine attenuated social behavioral deficits. The number of c-Fos-positive oxytocin neurons in the supraoptic nucleus and paraventricular nucleus was increased with L-carnosine supplementation in CD157KO mice after the three-chamber social approach test. We observed an increase in the number of c-Fos-positive neurons in the basolateral amygdala, a brain region involved in social behavior. Although the expression of oxytocin and oxytocin receptors in the hypothalamus was not altered by L-carnosine supplementation, the concentration of oxytocin in cerebrospinal fluid was increased in CD157KO mice by L-carnosine supplementation. These results suggest that L-carnosine supplementation restores social recognition impairments by augmenting the level of released oxytocin. Thus, we could imply the possibility of a safe nutritional intervention for at least some types of ASD in the human population.


Subject(s)
Autism Spectrum Disorder , Carnosine , Animals , Autism Spectrum Disorder/drug therapy , Carnosine/therapeutic use , Dietary Supplements , Mice , Oxytocin , Receptors, Oxytocin/physiology , Receptors, Oxytocin/therapeutic use
3.
Peptides ; 146: 170649, 2021 12.
Article in English | MEDLINE | ID: mdl-34543678

ABSTRACT

The receptor for advanced glycation end-products (RAGE) binds oxytocin (OT) and transports it from the blood to the brain. As RAGE's OT-binding capacity was lost in RAGE knockout (KO) mice, we predicted that circulating concentrations of unbound (free) OT should be elevated compared to wild-type (WT) mice. However, this hypothesis has not yet been investigated. Unfortunately, the evaluation of the dynamics of circulating free and bound plasma OT is unclear in immunoassays, in part because of interference from plasma proteins. A radioimmunoassay (RIA) is considered the gold standard method for overcoming this issue, but is more challenging to implement; thus, commercially available enzyme-linked immunosorbent assays (ELISAs) are more commonly used. Here, we developed a pre-treatment method to remove the interference-causing components from plasma before performing ELISA. The acetonitrile protein precipitation (PPT) approach was reliable, with fewer steps needed to measure free OT concentrations than by solid-phase extraction of plasma samples. PPT-extracted plasma samples yielded higher concentrations of OT in RAGE KO mice than in WT mice using ELISA. After peripheral OT injection, free OT plasma levels spiked immediately then rapidly declined in WT mice, but remained high in KO mice. These results suggest that plasma samples with PPT pre-treatment appear to be superior and that circulating soluble RAGE can most likely serve as a buffer for plasma OT, which indicates a novel physiological function of RAGE.


Subject(s)
Oxytocin/blood , Receptor for Advanced Glycation End Products/blood , Animals , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Female , Male , Mice , Mice, Inbred ICR , Mice, Knockout , Receptor for Advanced Glycation End Products/genetics
4.
PLoS One ; 15(12): e0244022, 2020.
Article in English | MEDLINE | ID: mdl-33326496

ABSTRACT

The ability of CD38 and CD157 to utilize nicotinamide adenine dinucleotide (NAD) has received much attention because the aging-induced elevation of CD38 expression plays a role in the senescence-related decline in NAD levels. Therefore, it is of interest to examine and compare the effects of age-associated changes on the general health and brain function impairment of Cd157 and Cd38 knockout (CD157 KO and CD38 KO) mice. The body weight and behaviors were measured in 8-week-old (young adult) or 12-month-old (middle-aged) male mice of both KO strains. The locomotor activity, anxiety-like behavior, and social behavior of the mice were measured in the open field and three-chamber tests. The middle-aged CD157 KO male mice gained more body weight than young adult KO mice, while little or no body weight gain was observed in the middle-aged CD38 KO mice. Middle-aged CD157 KO mice displayed increased anxiety-like behavior and decreased sociability and interaction compared with young adult KO mice. Middle-aged CD38 KO mice showed less anxiety and hyperactivity than CD157 KO mice, similar to young adult CD38 KO mice. The results reveal marked age-dependent changes in male CD157 KO mice but not in male CD38 KO mice. We discuss the distinct differences in aging effects from the perspective of inhibition of NAD metabolism in CD157 and CD38 KO mice, which may contribute to differential behavioral changes during aging.


Subject(s)
ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase/genetics , Aging/genetics , Antigens, CD/genetics , Membrane Glycoproteins/genetics , Phenotype , Social Behavior , Aging/physiology , Animals , Body Weight , GPI-Linked Proteins/genetics , Locomotion , Male , Mice , Mice, Inbred C57BL
5.
Sci Rep ; 10(1): 10035, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32572044

ABSTRACT

Oxytocin (OT) is a critical molecule for social recognition and memory that mediates social and emotional behaviours. In addition, OT acts as an anxiolytic factor and is released during stress. Based on the activity of CD38 as an enzyme that produces the calcium-mobilizing second messenger cyclic ADP-ribose (cADPR), CD157, a sister protein of CD38, has been considered a candidate mediator for the production and release of OT and its social engagement and anti-anxiety functions. However, the limited expression of CD157 in the adult mouse brain undermined confidence that CD157 is an authentic and/or actionable molecular participant in OT-dependent social behaviour. Here, we show that CD157 knockout mice have low levels of circulating OT in cerebrospinal fluid, which can be corrected by the oral administration of nicotinamide riboside, a recently discovered vitamin precursor of nicotinamide adenine dinucleotide (NAD). NAD is the substrate for the CD157- and CD38-dependent production of cADPR. Nicotinamide riboside corrects social deficits and fearful and anxiety-like behaviours in CD157 knockout males. These results suggest that elevating NAD levels with nicotinamide riboside may allow animals with cADPR- and OT-forming deficits to overcome these deficits and function more normally.


Subject(s)
Anxiety/drug therapy , Autism Spectrum Disorder/drug therapy , Niacinamide/analogs & derivatives , Oxytocin/deficiency , ADP-ribosyl Cyclase/genetics , Animals , Antigens, CD/genetics , Autism Spectrum Disorder/psychology , Dietary Supplements , Disease Models, Animal , Female , GPI-Linked Proteins/genetics , Male , Mice , Mice, Mutant Strains , Niacinamide/therapeutic use , Pyridinium Compounds , Social Behavior
6.
Horm Behav ; 120: 104695, 2020 04.
Article in English | MEDLINE | ID: mdl-31987898

ABSTRACT

In mammals, the development of healthy offspring requires maternal care. Behavior by lactating mothers toward other individuals is an important component of maternal aggression. However, it is unclear whether fathers display aggression primed by pups (an external factor), and the protection mechanism is poorly understood. To address this question, we examined paternal aggression in the ICR mouse strain. We found that sires exposed to cues from pups and lactating dams showed stronger aggression toward intruders than did sires that were deprived of family cues or exposed to nonlactating mates. c-Fos immunohistochemistry showed that cells in both the paraventricular and supraoptic nuclei (PVN and SON, respectively) in the hypothalamus of sires exposed to any cues were highly activated. However, c-Fos activation in oxytocinergic neurons was increased only in sires exposed to pup cues and solely in the PVN. In Cd38-knockout sires, the presence of pups induced no or reduced parental aggression; however, this phenotype was recovered, that is, aggression increased to the wild-type level, after intraperitoneal administration of oxytocin (OT). Specific c-Fos activation patterns induced by pup cues were not found in the PVN of knockout sires. These results demonstrate that the PVN is one of the primary hypothalamic areas involved in paternal aggression and suggest that a CD38-dependent OT mechanism in oxytocinergic neurons is critical for part of the behavior associated with the protection of offspring by nurturing male mice.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase/metabolism , Aggression/drug effects , Membrane Glycoproteins/metabolism , Oxytocin/pharmacology , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Paternal Behavior/drug effects , Animals , Animals, Newborn , Fathers/psychology , Female , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Mice , Mice, Inbred ICR , Mice, Knockout , Nesting Behavior/drug effects , Social Behavior
7.
J Neuroendocrinol ; 32(4): e12815, 2020 04.
Article in English | MEDLINE | ID: mdl-31770473

ABSTRACT

A monoclonal antibody against oxytocin was generated in 7a5 hybridoma cells derived from myeloma cells and lymphocytes from the spleen of mice immunised with a synthetic oxytocin peptide. The 7a5 monoclonal antibody bound with oxytocin in enzyme-linked immunosorbent assays. 7a5 cell growth medium was diluted up to 5000-fold and used for immunohistochemistry. First, to test the specificity of the 7a5 antibody against oxytocin, we stained brain tissues of oxytocin knockout mice, comprising mice in which the first exon of the oxytocin-neurophysin gene is deleted. No 7a5 immunoreactivity was detected in the paraventricular nucleus (PVN) of the hypothalamus of oxytocin knockout mice; however, this area was strongly stained with the anti-vasopressin polyclonal antibody, HM07. Tissue preparations of the wild-type mouse PVN and supraoptic nucleus (SON) displayed 7a5 immunoreactivity that was indistinguishable from the staining produced with an anti-oxytocin polyclonal antibody, HM06. The immunoreactivity of HM06 in the PVN was similar to that of an anti-oxytocin monoclonal antibody, PS38. We then examined the cross-reactivity of 7a5 with arginine vasopressin. The majority of cell soma and processes stained by 7a5 were not co-stained with the vasopressin antibody in SON and PVN regions. Furthermore, the suprachiasmatic nucleus was stained by the vasopressin antibody but not by 7a5. These results demonstrate that 7a5 is a new anti-oxytocin monoclonal antibody recognising oxytocin and not vasopressin; therefore, 7a5 can be used to investigate the role of oxytocin in the brain.


Subject(s)
Hypothalamus/metabolism , Immunohistochemistry , Neurons/metabolism , Oxytocin/metabolism , Animals , Antibodies, Monoclonal , Mice , Mice, Knockout
8.
Cells ; 9(1)2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31881755

ABSTRACT

Recent studies provide evidence to support that cluster of differentiation 38 (CD38) and CD157 meaningfully act in the brain as neuroregulators. They primarily affect social behaviors. Social behaviors are impaired in Cd38 and Cd157 knockout mice. Single-nucleotide polymorphisms of the CD38 and CD157/BST1 genes are associated with multiple neurological and psychiatric conditions, including autism spectrum disorder, Parkinson's disease, and schizophrenia. In addition, both antigens are related to infectious and immunoregulational processes. The most important clues to demonstrate how these molecules play a role in the brain are oxytocin (OT) and the OT system. OT is axo-dendritically secreted into the brain from OT-containing neurons and causes activation of OT receptors mainly on hypothalamic neurons. Here, we overview the CD38/CD157-dependent OT release mechanism as the initiation step for social behavior. The receptor for advanced glycation end-products (RAGE) is a newly identified molecule as an OT binding protein and serves as a transporter of OT to the brain, crossing over the blood-brain barrier, resulting in the regulation of brain OT levels. We point out new roles of CD38 and CD157 during neuronal development and aging in relation to nicotinamide adenine dinucleotide+ levels in embryonic and adult nervous systems. Finally, we discuss how CD38, CD157, and RAGE are crucial for social recognition and behavior in daily life.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase/metabolism , Antigens, CD/metabolism , Receptor for Advanced Glycation End Products/metabolism , Social Behavior , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Biomarkers , Brain/metabolism , Calcium Signaling , Enzyme Activation , GPI-Linked Proteins/metabolism , Gene Expression Regulation, Developmental , Genetic Association Studies , Humans , Immunohistochemistry , Mice, Knockout , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Oxytocin , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , Receptor for Advanced Glycation End Products/genetics , TRPM Cation Channels/metabolism
9.
Bioorg Med Chem ; 27(15): 3358-3363, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31229420

ABSTRACT

In the course of our studies of hydrophobic oxytocin (OT) analogues, we newly synthesized lipidated OT (LOT-4a-c and LOT-5a-c), in which a long alkyl chain (C14-C16) is conjugated via a carbonate or carbamate linkage at the Tyr-2 phenolic hydroxy group and a palmitoyl group at the terminal amino group of Cys-1. These LOTs did not activate OT and vasopressin receptors. Among the LOTs, however, LOT-4c, having a C16-chain via a carbonate linkage at the phenolic hydroxyl group of the Tyr-2, showed very long-lasting action for the recovery of impaired social behavior in CD38 knockout mice, a rodent model of autistic phenotypes, whereas the effect of OT itself rapidly diminished. These results indicate that LOT-4c may serve as a potential prodrug in mice.


Subject(s)
Carbamates/pharmacology , Carbonates/pharmacology , Oxytocin/pharmacology , Paternal Behavior/drug effects , Animals , Carbamates/chemistry , Carbonates/chemistry , Dose-Response Relationship, Drug , Female , Male , Mice , Mice, Inbred ICR , Mice, Knockout , Molecular Structure , Oxytocin/chemical synthesis , Oxytocin/chemistry , Social Behavior , Structure-Activity Relationship
10.
J Med Chem ; 62(7): 3297-3310, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30896946

ABSTRACT

The nonapeptide hormone oxytocin (OT) has pivotal brain roles in social recognition and interaction and is thus a promising therapeutic drug for social deficits. Because of its peptide structure, however, OT is rapidly eliminated from the bloodstream, which decreases its potential therapeutic effects in the brain. We found that newly synthesized OT analogues in which the Pro7 of OT was replaced with N-( p-fluorobenzyl)glycine (2) or N-(3-hydroxypropyl)glycine (5) exhibited highly potent binding affinities for OT receptors and Ca2+ mobilization effects by selectively activating OT receptors over vasopressin receptors in HEK cells, where 2 was identified as a superagonist ( EMax = 131%) for OT receptors. Furthermore, the two OT analogues had a remarkably long-acting effect, up to 16-24 h, on recovery from impaired social behaviors in two strains of CD38 knockout mice that exhibit autism spectrum disorder-like social behavioral deficits, whereas the effect of OT itself rapidly diminished.


Subject(s)
Autism Spectrum Disorder/drug therapy , Oxytocin/analogs & derivatives , Social Behavior , ADP-ribosyl Cyclase 1/genetics , Animals , Autism Spectrum Disorder/metabolism , Behavior, Animal , Calcium/metabolism , Disease Models, Animal , Female , HEK293 Cells , Humans , Male , Membrane Glycoproteins/genetics , Mice , Mice, Inbred ICR , Mice, Knockout , Oxytocin/pharmacokinetics , Oxytocin/pharmacology , Receptors, Oxytocin/agonists
11.
Behav Sci (Basel) ; 8(11)2018 Nov 03.
Article in English | MEDLINE | ID: mdl-30400329

ABSTRACT

Background: Oxytocin (OT), a neuropeptide, has positive effects on social and emotional processes during group activities. Because cooking is an integrated process in the cognitive, physical, and socio-emotional areas, cooking in a group is reported to improve emotion and cognition. However, evidence for efficacy in group cooking has not been well established at the biological level. Methods: To address this shortcoming, we first measured salivary levels of OT and cortisol (CORT), a biomarker of psychological stress, before and after group cooking for approximately 1 h by people who know each other in healthy married or unmarried men and women. We then compared the initial OT and CORT concentrations with those during individual non-cooking activities in isolation. Results: Baseline OT concentrations before group and non-group sessions did not significantly differ and OT levels increased after both types of activity in men and women. In men, however, the percentage changes of OT levels in the first over the second saliva samples were significantly small during cooking compared with those in individual activities. In women, however, such a difference was not observed. In contrast, the mean salivary CORT concentrations after group cooking were significantly decreased from the baseline level in both sexes, though such decreases were not significant after individual activity sessions. The sex-specific differences were marital-status independent. Conclusion: These results indicate that OT and CORT concentrations after two activity sessions by a familiar group changed in opposite directions in a sex-specific manner. This suggests that, because cooking is experience-based, we need to consider the sex-specific features of group cooking if we apply it for intervention.

12.
Brain Sci ; 7(10)2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29035307

ABSTRACT

Oxytocin (OT) is a nonapeptide that plays an important role in social behavior. Nasal administration of OT has been shown to improve trust in healthy humans and social interaction in autistic subjects. As is consistent with the nature of a peptide, OT has some unfavorable characteristics: it has a short half-life in plasma and shows poor permeability across the blood-brain barrier. Analogs with long-lasting effects may overcome these drawbacks. To this end, we have synthesized three analogs: lipo-oxytocin-1 (LOT-1), in which two palmitoyl groups are conjugated to the cysteine and tyrosine residues, lipo-oxytocin-2 (LOT-2) and lipo-oxytocin-3 (LOT-3), which include one palmitoyl group conjugated at the cysteine or tyrosine residue, respectively. The following behavioral deficits were observed in CD38 knockout (CD38-/-) mice: a lack of paternal nurturing in CD38-/- sires, decreased ability for social recognition, and decreased sucrose consumption. OT demonstrated the ability to recover these disturbances to the level of wild-type mice for 30 min after injection. LOT-2 and LOT-3 partially recovered the behaviors for a short period. Conversely, LOT-1 restored the behavioral parameters, not for 30 min, but for 24 h. These data suggest that the lipidation of OT has some therapeutic benefits, and LOT-1 would be most useful because of its long-last activity.

13.
Pharmacol Res Perspect ; 5(1): e00290, 2017 02.
Article in English | MEDLINE | ID: mdl-28596839

ABSTRACT

Oxytocin (OT) is a neuroendocrine nonapeptide that plays an important role in social memory and behavior. Nasal administration of OT has been shown to improve trust in healthy humans and social interaction in autistic subjects in some clinical trials. As a central nervous system (CNS) drug, however, OT has two unfavorable characteristics: OT is short-acting and shows poor permeability across the blood-brain barrier, because it exists in charged form in the plasma and has short half-life. To overcome these drawbacks, an analog with long-lasting effects is required. We previously synthesized the analog, lipo-oxytocin-1 (LOT-1), in which two palmitoyl groups are conjugated to the cysteine and tyrosine residues. In this study, we synthesized and evaluated the analogs lipo-oxytocin-2 (LOT-2) and lipo-oxytocin-3 (LOT-3), which feature the conjugation of one palmitoyl group at the cysteine and tyrosine residues, respectively. In human embryonic kidney-293 cells overexpressing human OT receptors, these three LOTs demonstrated comparably weak effects on the elevation of intracellular free calcium concentrations after OT receptor activation, compared to the effects of OT. The three LOTs and OT exhibited different time-dependent effects on recovery from impaired pup retrieval behavior in sires of CD38-knockout mice. Sires treated with LOT-1 showed the strongest effect, whereas others had no or little effects at 24 h after injection. These results indicated that LOTs have structure-specific agonistic effects, and suggest that lipidation of OT might have therapeutic benefits for social impairment.

SELECTION OF CITATIONS
SEARCH DETAIL
...