Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(41): 36697-36711, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36278107

ABSTRACT

Natural coal (N.C) was sulfonated with sulfuric acid by normal stirring (MS.C) and sonication waves (SS.C) to obtain -SO3H functionalized coal as enhanced adsorbents of malachite green dye (MG). The sulfonated products exhibit enhanced surface area (MS.C (27.2 m2/g) and SS.C (45.8 m2/g)) as compared to N.C. SS.C achieved higher acid density (14.2 mmol/g) and sulfur content (13.2 wt. %) as compared to MS.C. The impact of the sulfonation processes on the adsorption of MG was assessed based on the monolayer isotherm model of one energy. The MG Q sat of N.C (121.3 mg/g), MS.C (226.3 mg/g), and SS.C (296.4 mg/g) validate the significant effect of the sulfonation processes by the sonication waves. This is in agreement with the active site densities that reflect the saturation of SS.C by more active sites (180.74 mg/g) than MS.C (120.38 mg/g) and N.C (70.84 mg/g). The MS.C and SS.C can adsorb three MG molecules as compared to two molecules per site of N.C. The Gaussian energy (<8 kJ/mol) and adsorption energy (<40 kJ/mol)) reflects the physisorption of MG involving van der Waals forces, hydrogen bonding, and dipole bonding forces. The thermodynamic functions demonstrate the uptake of MG by exothermic, spontaneous, feasible reactions.

2.
ACS Omega ; 7(35): 31218-31232, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36092609

ABSTRACT

An iron-impeded geopolymer (Fe/GP) was synthesized from natural ferruginous kaolinite and optical waste for enhanced decontamination of Congo red (CR) dye. The adsorption properties of Fe/GP were assessed using an advanced monolayer equilibrium model of one energy (R 2 > 0.99). Fe/GP possessed an active site density of 391.3 mg/g, which induced an adsorption capacity of 634 mg/g at the saturation state. The number of adsorbed CR molecules per site (n = 1.56-1.62) reflected the possible uptake of two molecules per site via a multimolecular mechanism. The adsorption energy (5.12-5.7 kJ/mol) reflected the physical adsorption of the CR molecules via hydrogen bonding and/or van der Waals forces. As a catalyst, notable activity toward photo-Fenton oxidation was achieved even at high CR concentrations. Complete oxidation was observed after 30 (CR concentration: 10 mg/L), 50 (20 mg/L), 80 (30 mg/L), 120 (40 mg/L), and 140 min (50 mg/L). High oxidation efficiency was achieved using 0.1 g/L Fe/GP, 0.1 mL of hydrogen peroxide (H2O2), and a visible light source. Increasing the Fe/GP dosage to 0.3 g/L resulted in complete oxidation of CR (100 mg/L) after 220 min. Therefore, synthetic Fe/GP can be used as a low-cost and superior catalyst and adsorbent for the removal of CR-based contaminants via adsorption or advanced oxidation processes.

3.
ACS Omega ; 6(46): 31260-31271, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34841170

ABSTRACT

Bentonite sample enriched in organic matters (oil shale) was functionalized with -SO3H sulfonated carbonaceous bentonite (S-CB) by sulfonation process as a low-cost and effective acidic catalyst for the transesterification spent sunflower oil (SFO). The sulfonation effect was followed by several analytic techniques including X-ray diffraction, Fourier transform infrared, and scanning electron microscopy analysis. The catalytic performance of the sulfonated product was evaluated based on a statistical design which was built according to the response surface methodology and the central composite rotatable design. Using the S-CB acidic catalyst in the transesterification of spent SFO resulted in an actual biodiesel yield of 96% at studied conditions of 85 min at reaction interval, 50 °C as temperature,15:1 as methanol/oil ratio, and 3.5 wt % as S-CB loading. Moreover, the optimization function suggested enhancement to obtained yield up to 97.9% by selecting the values of temperature at 62 °C, the time at 98.5 min, the methanol/SFO ratio at 14.4:1, and S-CB loading at 3.4 wt %. The technical evaluation of the SFO biodiesel reflected the suitability of the product to be used as biofuels according to international standards. The kinetic behavior of the SFO transesterification reaction over S-CB is of pseudo-first order properties and of low activation energy. Finally, the synthetic S-CB as a solid acidic catalyst is of significant reusability and was reused five times with remarkable biodiesel yields.

SELECTION OF CITATIONS
SEARCH DETAIL
...