Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902027

ABSTRACT

Carbonic anhydrase IX (CA IX) is a membrane-bound CA isozyme over-expressed in many hypoxic tumor cells, where it ensures pH homeostasis and has been implicated in tumor survival, metastasis and resistance to chemotherapy and radiotherapy. Given the functional importance of CA IX in tumor biochemistry, we investigated the expression dynamics of CA IX in normoxia, hypoxia and intermittent hypoxia, which are typical conditions experienced by tumor cells in aggressive carcinomas. We correlated the CA IX epitope expression dynamics with extracellular pH acidification and with viability of CA IX-expressing cancer cells upon treatment with CA IX inhibitors (CAIs) in colon HT-29, breast MDA-MB-231 and ovarian SKOV-3 tumor cell models. We observed that the CA IX epitope expressed under hypoxia by these cancer cells is retained in a significant amount upon reoxygenation, probably to preserve their proliferation ability. The extracellular pH drop correlated well with the level of CA IX expression, with the intermittent hypoxic cells showing a similar pH drop to fully hypoxic ones. All cancer cells showed higher sensitivity to CA IX inhibitors (CAIs) under hypoxia as compared to normoxia. The tumor cell sensitivity to CAIs under hypoxia and intermittent hypoxia were similar and higher than in normoxia and appeared to be correlated with the lipophilicity of the CAI.


Subject(s)
Carbonic Anhydrases , Ovarian Neoplasms , Female , Humans , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Antigens, Neoplasm/metabolism , Hypoxia , Cell Hypoxia , Sulfonamides/pharmacology , Hydrogen-Ion Concentration , Cell Death , Cell Line, Tumor
2.
Pharmaceutics ; 13(8)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34452076

ABSTRACT

Despite potential for clinical efficacy, therapeutic delivery of microRNAs (miRNA) remains a major translational barrier. Here, we explore a strategy for miRNA delivery in the treatment of glioblastoma, the most common form of adult brain cancer, that involves complexation of miRNA with polyethylenimine (PEI) and encapsulation in targeted liposomes. miRNA 603 (miR-603) is a master regulatory miRNA that suppresses glioblastoma radiation resistance through down-regulation of insulin-like growth factor 1 (IGF1) signaling. miR-603 was complexed with PEI, a cationic polymer, and encapsulated into liposomes decorated with polyethylene glycol (PEG) and PR_b, a fibronectin-mimetic peptide that specifically targets the α5ß1 integrin that is overexpressed in glioblastomas. Cultured patient-derived glioblastoma cells internalized PR_b-functionalized liposomes but not the non-targeted liposomes. The integrin targeting and complexation of the miRNA with PEI were associated with a 22-fold increase in intracellular miR-603 levels, and corresponding decreases in IGF1 and IGF1 receptor (IGF1R) mRNA expression. Moreover, treatment of glioblastoma cells with the PR_b liposomes encapsulating miR-603/PEI sensitized the cells to ionizing radiation (IR), a standard of care treatment for glioblastomas. These results suggest that PR_b-functionalized PEGylated liposomes encapsulating miR-603/PEI complexes hold promise as a therapeutic platform for glioblastomas.

3.
Bioeng Transl Med ; 6(1): e10194, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33532593

ABSTRACT

Despite decades of research, there are few targeted treatment options available for triple negative breast cancer (TNBC), leaving chemotherapy, and radiation treatment regimes with poor response and high toxicity. Herein aptamer-amphiphiles were synthesized which selectively bind to the mucin-1 (MUC1) glycoprotein that is overexpressed in TNBC cells. These amphiphiles have a fluorescent tail (1,8-naphthalimide or 4-nitro-1,8-naphthalimide) which enables self-assembly of the amphiphiles and allows for easy visualization without the requirement for further conjugation of a fluorophore. Interestingly, the length of the alkyl spacer (C4 or C12) between the aptamer and tail was shown to influence the morphology of the self-assembled structure, and thus its ability to internalize into the TNBC cells. While both the MUC1 aptamer-C4-napthalimide spherical micelles and the MUC1 aptamer-C12-napthalimide long cylindrical micelles showed internalization into MDA-MB-468 TNBC cells but not the noncancerous MCF-10A breast cells, the cylindrical micelles showed greatly enhanced internalization into the MDA-MB-468 cells. Similar patterns of enhanced binding and internalization were observed between the MUC1 aptamer-C12-napthalimide cylindrical micelles and SUM159 and MDA-MB-231 TNBC cells. The MUC1 aptamer cylindrical micelles were not toxic to the cells, and when used to deliver doxorubicin to the TNBC cells, were shown to be as cytotoxic as free doxorubicin. Moreover, a pharmacokinetic study in mice showed a prolonged systemic circulation time of the MUC1 aptamer cylindrical micelles. There was a 4.6-fold increase in the elimination half-life of the aptamer cylindrical micelles, and their clearance decreased 10-fold compared to the MUC1 aptamer spherical micelles. Thus, the MUC1 aptamer-C12-napthalimide nanofibers represent a promising vehicle that could be used for easy visualization and targeted delivery of therapeutic loads to TNBC cells.

4.
Int J Mol Sci ; 22(3)2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33498779

ABSTRACT

Hypoxic tumors overexpress membrane-bound isozymes of carbonic anhydrase (CA) CA IX and CA XII, which play key roles in tumor pH homeostasis under hypoxia. Selective inhibition of these CA isozymes has the potential to generate pH imbalances that can lead to tumor cell death. Since these isozymes are dimeric, we designed a series of bifunctional PEGylated CA inhibitors (CAIs) through the attachment of our preoptimized CAI warhead 1,3,4-thiadiazole-2-sulfonamide to polyethylene glycol (PEG) backbones with lengths ranging from 1 KDa to 20 KDa via a succinyl linker. A detailed structure-thermal properties and structure-biological activity relationship study was conducted via differential scanning calorimetry (DSC) and via viability testing in 2D and 3D (tumor spheroids) cancer cell models, either CA IX positive (HT-29 colon cancer, MDA-MB 231 breast cancer, and SKOV-3 ovarian cancer) or CA IX negative (NCI-H23 lung cancer). We identified PEGylated CAIs DTP1K 28, DTP2K 23, and DTP3.4K 29, bearing short and medium PEG backbones, as the most efficient conjugates under both normoxic and hypoxic conditions, and in the tumor spheroid models. PEGylated CAIs did not affect the cell viability of CA IX-negative NCI-H23 tumor spheroids, thus confirming a CA IX-mediated cell killing for these potential anticancer agents.


Subject(s)
Antigens, Neoplasm/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Calorimetry, Differential Scanning , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/chemical synthesis , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Polyethylene Glycols/chemistry , Structure-Activity Relationship , Tumor Hypoxia/drug effects
5.
Int J Pharm ; 593: 120139, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33278494

ABSTRACT

Pancreatic cancer represents a life threatening disease with rising mortality. Although the synergistic combination of gemcitabine and albumin-bound paclitaxel has proven to enhance the median survival rates as compared to gemcitabine alone, their systemic and repeated co-administration has been associated with serious toxic side effects and poor patient compliance. For this purpose, we designed a thermosensitive and biodegradable hydrogel encapsulating targeted nanoparticles for the local and sustained delivery of gemcitabine (GEM) and paclitaxel (PTX) to pancreatic cancer. GEM and PTX were loaded into PR_b-functionalized liposomes targeting integrin α5ß1, which was shown to be overexpressed in pancreatic cancer. PR_b is a fibronectin-mimetic peptide that binds to α5ß1 with high affinity and specificity. The PR_b liposomes were encapsulated into a poly(δ-valerolactone-co-D,L-lactide)-b-poly(ethylene glycol)-b-poly(δ-valerolactone-co-D,L-lactide) (PVLA-PEG-PVLA) hydrogel and demonstrated sustained release of both drugs compared to PR_b-functionalized liposomes free in solution or free drugs in the hydrogel. Moreover, the hydrogel-nanoparticle system was proven to be very efficient towards killing monolayers of human pancreatic cancer cells (PANC-1), and showed a significant reduction in the growth pattern of PANC-1 tumor spheroids as compared to hydrogels encapsulating non-targeted liposomes with GEM/PTX or free drugs, after a one week treatment period. Our hybrid hydrogel-nanoparticle system is a promising platform for the local and sustained delivery of GEM/PTX to pancreatic cancer, with the goal of maximizing the therapeutic efficacy of this synergistic drug cocktail while potentially minimizing toxic side effects and eliminating the need for repeated co-administration.


Subject(s)
Nanoparticles , Pancreatic Neoplasms , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Drug Delivery Systems , Humans , Hydrogels/therapeutic use , Paclitaxel/therapeutic use , Pancreatic Neoplasms/drug therapy , Polyethylene Glycols/therapeutic use , Gemcitabine
6.
Curr Pharm Biotechnol ; 22(5): 654-671, 2021.
Article in English | MEDLINE | ID: mdl-32707027

ABSTRACT

OBJECTIVE: L-Asparaginase is an important enzyme that converts L-asparagine to L-aspartate and ammonia. Microbial L-asparaginase has important applications as anticancer and food processing agents. METHODS: This study reported the isolation, screening of a local yeast isolate from banana peel for L-asparaginase production using submerged fermentation, optimization of the production, purification, and anticancer assay of L-asparaginase. The yeast isolate was identified as Kodamaea ohmeri ANOMY based on the analysis of nuclear large subunit (26S) rDNA partial sequences. It was a promising L-asparaginase producer with a specific activity of 3059±193 U/mg in a non-optimized medium. The classical one-variable-at-a-time method was used to optimize the production medium components, and it was found that the elimination of K2HPO4 from the medium increased L-asparaginase specific activity (3100.90±180 U/mg). RESULTS: Statistical optimization of L-asparaginase production was done using Plackett-Burman and Box-Behnken designs. The production medium for the maximum L-asparaginase specific activity (8500±578U/mg) was as follows (g/L): L-asparagine (7.50), NaNO3 (0.50), MgSO4.7H2O (0.80), KCl (0.80) associated with an incubation period of 5 days, inoculum size of 5.60 %, and pH (7.0). The optimization process increased L-asparaginase production by 2.78-fold compared to the non-optimized medium. L-Asparaginase was purified using ammonium sulphate precipitation followed by gel filtration on a Sephadex G-100 column. Its molecular weight was 66 KDa by SDS-PAGE analysis. CONCLUSION: The cell morphology technique was used to evaluate the anticancer activity of L-asparaginase against three different cell lines. L-Asparaginase inhibited the growth of HepG-2, MCF-7, and HCT-116 cells at a concentration of 20, 50, and 60 µL, respectively.


Subject(s)
Antineoplastic Agents/pharmacology , Asparaginase/pharmacology , Musa/microbiology , Saccharomycetales/chemistry , Antineoplastic Agents/chemistry , Asparaginase/chemistry , Asparaginase/isolation & purification , Cell Line, Tumor , Chromatography, Gel , Drug Screening Assays, Antitumor , Fermentation , Humans
7.
Bioconjug Chem ; 30(11): 2763-2770, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31589417

ABSTRACT

An aptamer-amphiphile was designed that binds to ß-lactoglobulin (ß-LG), a major allergen from cow's milk. For this work, a 23-nucleotide ssDNA aptamer ß-LG-23, capable of forming antiparallel G-quadruplexes was used, and its specificity and binding affinity of 22 ± 2 nM for ß-LG were evaluated via enzyme-linked apta-sorbent assay (ELASA). The ß-LG-23 aptamer was synthesized as an amphiphile by conjugating it to a C16 double tail via different spacers, and the effect of the spacers on the binding affinity and secondary structure of the aptamer was investigated. From all amphiphiles tested, direct conjugation of the aptamer to the tail gave the lowest binding affinity to ß-LG (37 ± 2 nM), while maintaining the antiparallel G-quadruplex secondary structure of the aptamer. As a proof of concept, the ß-LG-23 aptamer-amphiphile was used to decorate the interface of a liquid crystal (LC) and effectively detected 10 nM or 0.18 ppm of ß-LG with a 20 min equilibration time, thus demonstrating that it has the potential to be used for fast and label-free detection of ß-LG.


Subject(s)
Aptamers, Nucleotide/chemistry , DNA, Single-Stranded/chemistry , Drug Design , Lactoglobulins/analysis , Liquid Crystals/chemistry , Animals , Aptamers, Nucleotide/genetics , Cattle , DNA, Single-Stranded/genetics , Lactoglobulins/chemistry , Lactoglobulins/genetics
8.
Expert Opin Ther Pat ; 29(7): 509-533, 2019 07.
Article in English | MEDLINE | ID: mdl-31172829

ABSTRACT

INTRODUCTION: The physiologic importance of fast CO2/HCO3- interconversion in various tissues requires the presence of carbonic anhydrase (CA, EC 4.2.1.1). Fourteen CA isozymes are present in humans, all of them being used as biomarkers. AREAS COVERED: A great number of patents and articles were focused on the use of CA isozymes as biomarkers for various diseases and syndromes in the recent years, in an ascending trend over the last decade. The review highlights the most important studies related with each isozyme and covers the most recent patent literature. EXPERT OPINION: The CAs biomarker research area expanded significantly in recent years, shifting from the predominant use of CA IX and CA XII in cancer diagnostic, staging, and prognosis towards a wider use of CA isozymes as disease biomarkers. CA isozymes are currently used either alone, in tandem with other CA isozymes and/or in combination with other proteins for the detection, staging, and prognosis of a huge repertoire of human dysfunctions and diseases, ranging from mild transformation of the normal tissues to extreme shifts in tissue organization and function. The techniques used for their detection/quantitation and the state-of-the-art in each clinical application are presented through relevant clinical examples and corresponding statistical data.


Subject(s)
Biomarkers/metabolism , Carbonic Anhydrases/metabolism , Isoenzymes/metabolism , Animals , Humans , Neoplasm Staging , Neoplasms/enzymology , Neoplasms/pathology , Patents as Topic , Prognosis
9.
ACS Appl Mater Interfaces ; 10(21): 17792-17808, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29733576

ABSTRACT

Hypoxia is a common feature of solid tumors contributing to resistance to chemotherapy. Selective delivery of chemotherapeutic drugs to hypoxic tumor niche remains an unsolved issue. For this purpose, we constructed a gold nanoplatform targeting carbonic anhydrase IX (CA IX) epitope, which is overexpressed in hypoxic tumor cells versus in normal tissues. We designed compatible low-molecular weight carbonic anhydrase inhibitor (CAI) ligands and doxorubicin (Dox) ligands and optimized protocols for efficient decoration of gold nanoparticles (Au NPs) to achieve both good targeting ligand density and optimum drug loading, while preserving colloidal stability. The optimized Dox-HZN-DTDP@Au NPs-LA-PEG2000-CAI (THZN) nanoplatform was proved to be very efficient toward killing HT-29 tumor cells, especially under hypoxic conditions, as compared with the nontargeting nanoplatform. This also mediated the effective release of doxorubicin in the lysosomes following internalization, as revealed by confocal microscopy. Furthermore, using tumor spheroids as a representative model for hypoxic solid tumors, our THZN nanoplatform enhanced the selective delivery of doxorubicin up to 2.5 times and minimized chemoresistance, showing better tumor drug penetration as compared to that in free drug treatment. Our technology is the first CA IX-targeting gold nanoplatform for efficient delivery of doxorubicin to hypoxic tumors in a controlled fashion, with the perspective to improve the therapy of solid tumors and minimize chemoresistance.


Subject(s)
Nanostructures , Antigens, Neoplasm , Carbonic Anhydrase IX , Carbonic Anhydrases , Cell Hypoxia , Doxorubicin , Drug Resistance, Neoplasm , Gold , Humans , Hydrogen-Ion Concentration , Metal Nanoparticles
10.
J Med Chem ; 59(10): 5077-88, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27144971

ABSTRACT

A series of aromatic/heterocyclic bis-sulfonamides were synthesized from three established aminosulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitor pharmacophores, coupled with either ethylene glycol oligomeric or polymeric diamines to yield bis-sulfonamides with short or long (polymeric) linkers. Testing of novel inhibitors and their precursors against a panel of membrane-bound CA isoforms, including tumor-overexpressed CA IX and XII and cytosolic isozymes, identified nanomolar-potent inhibitors against both classes and several compounds with medium isoform selectivity in a detailed structure-activity relationship study. The ability of CA inhibitors to kill tumor cells overexpressing CA IX and XII was tested under normoxic and hypoxic conditions, using 2D and 3D in vitro cellular models. The study identified a nanomolar potent PEGylated bis-sulfonamide CA inhibitor (25) able to significantly reduce the viability of colon HT-29, breast MDA-MB231, and ovarian SKOV-3 cancer cell lines, thus revealing the potential of polymer conjugates in CA inhibition and cancer treatment.


Subject(s)
Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/pharmacology , Polyethylene Glycols/chemistry , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...