Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 16(28): e2001340, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32519514

ABSTRACT

The surging interest in high performance, low-cost, and safe energy storage devices has spurred tremendous research efforts in the development of advanced electrode active materials. Herein, the in situ growth of zinc-iron layered double hydroxide (Zn-Fe LDH) on graphene aerogel (GA) substrates through a facile, one-pot hydrothermal method is reported. The strong interaction and efficient electronic coupling between LDH and graphene substantially improve interfacial charge transport properties of the resulting nanocomposite and provide more available redox active sites for faradaic reactions. An LDH-GA||Ni(OH)2 device is also fabricated that results in greatly enhanced specific capacity (187 mAh g-1 at 0.1 A g-1 ), outstanding specific energy (147 Wh kg-1 ), excellent specific power (16.7 kW kg-1 ), along with 88% capacity retention after >10 000 cycles. This approach is further extended to Ni-MH and Ni-Cd batteries to demonstrate the feasibility of compositing with graphene for boosting the energy storage performance of other well-known Ni-based batteries. In contrast to conventional Ni-based batteries, the nearly flat voltage plateau followed by a sloping potential profile of the integrated supercapacitor-battery enables it to be discharged down to 0 V without being damaged. These findings provide new prospects for the design of high-performance and affordable superbatteries based on earth-abundant elements.

2.
ACS Nano ; 13(11): 12567-12576, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31633927

ABSTRACT

The pursuit of new negative electrode materials for redox supercapacitors with a high capacitance, boosted energy, and high rate capability is still a tremendous challenge. Herein, we report a Nile Blue conjugated graphene aerogel (NB-GA) as a negative electrode material with excellent pseudocapacitive performance (with specific capacitance of up to 483 F g-1 at 1 A g-1) in all acidic, neutral, and alkaline aqueous electrolytes. The contribution from capacitive charge storage represents 93.4% of the total charge, surpassing the best pseudocapacitors known. To assess the feasibility of NB-GA as a negative electrode material across the full pH range, we fabricated three devices, namely, a symmetric NB-GA||NB-GA device in an acidic (1.0 M H2SO4) electrolyte, an NB-GA||MnO2 device in a pH-neutral (1.0 M Na2SO4) electrolyte, and an NB-GA||LDH (LDH = Ni-Co-Fe layered double hydroxide) device in an alkaline (1.0 M KOH) electrolyte. The NB-GA||NB-GA device exhibits a maximum specific energy of 22.1 Wh kg-1 and a specific power of up to 8.1 kW kg-1; the NB-GA||MnO2 device displays a maximum specific energy of 55.5 Wh kg-1 and a specific power of up to 14.9 kW kg-1, and the NB-GA||LDH device shows a maximum specific energy of 108.5 Wh kg-1 and a specific power of up to 25.1 kW kg-1. All the devices maintain excellent stability over 5000 charge-discharge cycles. The outstanding pseudocapacitive performances of the NB-GA nanocomposites render them a highly promising negative electrode material across the entire pH range.

SELECTION OF CITATIONS
SEARCH DETAIL
...