Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 261: 122021, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38986280

ABSTRACT

Membrane distillation (MD) equipped with omniphobic (non-wetting) membranes has found a niche in water reclamation from hypersaline industrial wastewater. Here, we examined the efficacy of non-fluorinated materials as surface coating agents for omniphobic MD membrane fabrication, and identified necessary mechanisms to attain a maximized wetting resistance using fluorine-free materials. We first prepared MD membranes with different surface chemistries using a series of linear alkylsilanes and polydimethylsiloxane (PDMS) as representative fluorine-free, low surface energy materials. Membranes modified with a longer chain alkylsilane exhibited a lower surface energy and demonstrated a greater wetting resistance in direct contact MD experiments using feedwaters of various surface tensions. Despite the nearly identical surface energy measured for the longest alkylsilane and PDMS, PDMS-modified membrane exhibited an extended antiwetting performance as compared to the membrane treated with the longest alkylsilane. To elucidate the source of the distinctive wetting resistance, we examined the nucleation and condensation kinetics on the surfaces with the different surface chemistries via environmental scanning electron microscopy. Our analysis suggests that the membranes treated with long chain alkylsilanes contain surface defects (i.e., hydrophilic regions) whereas the high mobility of the PDMS effectively minimizes the defect exposure, slowing down the condensation and subsequent surface wetting.

2.
Small ; : e2400580, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529758

ABSTRACT

During synthetic textile washing, rubbing between fibres or against the washing machine, exacerbated by the elevated temperature, initiates the release of millions of microplastic fibres into the environment. A general tribological strategy is reported that practically eliminates the release of microplastic fibres from laundered apparel. The two-layer fabric finishes combine low-friction, liquidlike polymer brushes with "molecular primers", that is, molecules that durably bond the low-friction layers to the surface of the polyester or nylon fabrics. It is shown that when the coefficient of friction is below a threshold of 0.25, microplastic fibre release is substantially reduced, by up to 96%. The fabric finishes can be water-wicking or water-repellent, and their comfort properties are retained after coating, indicating a tunable and practical strategy toward a sustainable textile industry and plastic-free oceans and marine foodstuffs.

3.
Mater Horiz ; 10(10): 4293-4302, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37409585

ABSTRACT

Textiles with a wicking finish transport moisture away from the skin, such that it is exposed to the environment for fast evaporation, aiding in thermophysiological comfort. Once saturated, such as in highly humid environments or if the wearer dons multiple layers, the efficacy of such a finish is substantially reduced. Here, we develop a new type of fluid transport textile design by combining physical and chemical wettability patterns to transport and remove liquids like sweat. First, a non-toxic, superhydrophobic fabric finish is developed that retains the air permeability of the fabric. Next, two superhydrophobic fabric layers are threaded together, containing wettability channels patterned at the inner/interior side of the fabrics. This design allows for liquid transport through the stitches to the interior channels and keeps both external faces dry. The developed strategy enables directional fluid transport under highly humid conditions, resulting in a ∼20 times faster transport rate than evaporation-based methods. The design principles described here can be used to provide thermophysiological comfort for users in extreme conditions, such as firefighters, law enforcement personnel, and health workers wearing personal protective ensembles.

4.
J Hazard Mater ; 409: 124945, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33418298

ABSTRACT

Protective clothing must repel hazardous liquids such as oils, acids, and solvents, which often exhibit low surface tension. The low surface tension liquid repellency of textiles is currently characterized qualitatively, considering only the first thirty seconds of wetting. This study demonstrates that embedded sensors within protective fabrics can more fully characterize liquid repellency while simultaneously detecting the hazardous substance. The liquid repellency of oleophobic textiles was detected in-situ using differential planar microwave resonator structures. A differential split ring resonator was designed with resonant responses at 4.4 and 4.6 GHz with a sensitivity of 50 MHz per unit ε. Fabrics were rendered oleophobic by dip-coating. The liquid repellency was monitored in-situ using droplets of heptane, octane, decane, dodecane, and water. Wetting transitions and droplet evaporation were identified in real time. The 4.4 GHz resonance peak's shift was used to measure the liquid repellency, whereas the 4.6 GHz resonator monitored the liquid's vapor as it absorbed into a gas-sensitive elastomer. The microwave response was tracked over 10 h every 15 s, and this transient data could identify the liquids based on their wetting and evaporation rates. Such sensors could be readily embedded in oleophobic textiles and enhance personal protective equipment.

5.
ACS Appl Mater Interfaces ; 12(28): 31933-31939, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32497426

ABSTRACT

Liquid fouling can reduce the functionality of critical engineering surfaces. Recent studies have shown that minimizing contact angle hysteresis is a promising strategy for achieving omniphobic (all-liquid repellent) properties, thereby inhibiting fouling. Prior omniphobic films can repel a broad range of liquids, but the applicability of these coatings has always been limited to silicon wafers or smooth glass. Here we develop a facile procedure to generate an omniphobic coating on any surface, including metals, paper, ceramics, etc. The coating involves depositing an ultrasmooth, silicon wafer-like silica layer and then treating this layer with a highly reactive chlorosilane, which grafts polydimethylsiloxane chains onto the surface. Negligible contact angle hysteresis (≤1°) for various liquids, including ultralow surface tension oils, alcohols, and fluoro-solvents, was achieved on many different substrates regardless of their initial roughness or chemistry. In fact, the contact angle hysteresis was so low we were forced to propose an alternate measurement technique, using tilt angles, that reduced the inherent errors associated with traditional contact angle goniometry. The coating's durability was characterized and, when it was damaged, could be repeatedly repaired, fully restoring the omniphobic properties to their initial state.

SELECTION OF CITATIONS
SEARCH DETAIL
...