Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Food Sci Nutr ; 11(6): 2767-2775, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37324902

ABSTRACT

Peripheral nerve injuries are one of those complex medical conditions for which a highly effective first-line treatment is currently missing. The use of natural compound as medicines to treat various disorders has a long history. Our previous research explored that crude Cannabis sativa L. accelerated the recovery of sensorimotor functions following nerve injury. The purpose of the current study was to investigate the effects of n-Hexane and ethyl acetate extracts of C. sativa L. leaves on the muscle function restoration in a mouse model after sciatic nerve injury. For this purpose, albino mice (n = 18) were equally divided into control and two treatment groups. The control group was fed on a plain diet while treatment groups were given a diet having n-Hexane (treatment 1) and ethyl acetate (treatment 2) extracts of C. sativa L. (10 mg/kg body weight), respectively. The hot plate test (M = 15.61, SD = 2.61, p = .001), grip strength (M = 68.32, SD = 3.22, p < .001), and sciatic functional index (SFI) (M = 11.59, SD = 6.54, p = .012) assessment indicated significant amelioration in treatment 1 as compared to treatment 2 group. Furthermore, muscle fiber cross-sectional area revealed a noticeable improvement (M = 182,319, SD = 35.80, p = .013) in treatment 1 while muscle mass ratio of Gastrocnemius (M = 0.64, SD = 0.08, p = .427) and Tibialis anterior (M = 0.57, SD = 0.04, p = .209) indicated nonsignificant change. A prominent increase in total antioxidant capacity (TAC) (M = 3.76, SD = 0.38, p < .001) and momentous decrease in total oxidant status (TOS) (M = 11.28, SD = 5.71, p < .001) along with blood glucose level indicated significant difference (M = 105.5, SD = 9.12, p < 0.001) in treatment 1 group. These results suggest that treatment 1 has the ability to speed up functional recovery after a peripheral nerve lesion. Further research is necessary, nevertheless, to better understand the extract's actual curative properties and the mechanisms that improve functional restoration.

2.
Front Pharmacol ; 13: 800970, 2022.
Article in English | MEDLINE | ID: mdl-35250557

ABSTRACT

The Staphylococcus aureus exfoliative toxins (ETs) are the main toxins that produce staphylococcal scalded skin syndrome (SSSS), an abscess skin disorder. The victims of the disease are usually newborns and kids, as well as grown-up people. Five ETs namely, exfoliative toxins A, B, C, D, and E have been identified in S. aureus. The three-dimensional (3D) structure of exfoliative toxins A, B, C and E is known, while that of exfoliative toxin D (ETD) is still unknown. In this work, we have predicted the 3D structure of ETD using protein modeling techniques (software used for 3D structure modeling comprising the MODELLER 9v19 program, SWISS-Model, and I-TESSER). The validation of the build model was done using PROCHECK (Ramachandran plot), ERRAT2, and Verify 3D programs. The results from 3D modeling show that the build model was of good quality as indicated by a GMQE score of 0.88 and by 91.1% amino acid residues in the most favored region of the Ramachandran plot, the ERRAT2 quality factor of 90.1%, and a verify3D score of >0.2 for 99.59% of amino acid residues. The 3D structure analysis indicates that the overall structure of ETD is similar to the chymotrypsin-like serine protease fold. The structure is composed of 13 ß-strands and seven α-helices that fold into two well-defined six-strand ß-barrels whose axes are roughly perpendicular to each other. The active site residues include histidine-97, aspartic acid-147, and serine-221. This represents the first structure report of ETD. Structural comparison with the other ETs shows some differences, particularly in the loop region, which also change the overall surface charge of these toxins. This may convey variable substrate specificity to these toxins. The inhibition of these toxins by natural (2S albumin and flocculating proteins from Moringa oleifera seeds) and synthetic inhibitors (suramin) was also carried out in this study. The results from docking indicate that the inhibitors bind near the C-terminal domain which may restrict the movement of this domain and may halt the access of the substrate to the active site of this enzyme. Molecular dynamic simulation was performed to see the effect of inhibitor binding to the enzyme. This work will further elucidate the structure-function relationship of this enzyme. The inhibition of this enzyme will lead to a new treatment for SSSS.

3.
Food Sci Nutr ; 9(9): 5016-5027, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34532013

ABSTRACT

Peripheral nerve injuries are among those complicated medical conditions, which are still waiting for their highly effective first-line therapies. In this study, the role of Calotropis procera crude leaves was evaluated at different doses for their effectiveness in improving functional recovery following sciatic nerve injury-induced in the mouse model. Thirty-two healthy albino mice were divided into four groups as Normal chow group (control, n = 8) and C. procera chow groups (50 mg/kg (n = 8), 100 mg/kg (n = 8) and 200 mg/kg (n = 8)). Behavioral analyses were performed to assess and compare improved functional recovery along with skeletal muscle mass measurement in all groups. Serum samples were analyzed for oxidative stress markers. Results showed that C. procera leaves at dose-dependent manner showed statistically prominent (p < .05) increase in sensorimotor functions reclamation as confirmed by behavioral analyses along with muscle mass restoration and prominent decline in TOS and momentous increase in TAC along with the augmented activity of antioxidative enzymes.

4.
Food Sci Nutr ; 9(2): 701-710, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33598155

ABSTRACT

Peripheral nerve injury (PNI) is one of the major health concerns faced by the community at present. Till now, available therapeutic approaches are ineffective to fully heal a nerve injury and to assure the functional recovery entirely. Natural compounds can prove attractive and effective drug candidates to bridge up this gap. In this scenario, the present study was designed to explore the role of methanolic extract of Foeniculum vulgare (F. vulgare) seeds in accelerating the function regain following a sciatic nerve injury in a mouse model. For this purpose, 12 adult healthy albino mice (BALB/C), 8-10 weeks old, were grouped as control (Ctrl, n = 6) and treatment (Trt, n = 6). The treated group was given methanolic extract of F. vulgare (200 mg/kg per day) started from the day of nerve crush until the end of the study. The sensorimotor function regain assessed by hot plate test, grip strength, and SFI assessments was found significantly (p < .05) ameliorated in the F. vulgare-treated group. A prominent improvement in the muscle mass of the treated group further affirmed these effects. Furthermore, morphometric analysis of muscle fiber cross-sectional area of tibialis anterior muscle between groups revealed a noticeable improvement in muscle fibers' diameter of the treated group. Conclusively, these findings suggest that F. vulgare methanolic extract exhibits the potential to escalate functional recovery following a peripheral nerve injury. However, the real players of this extract and the mechanism involved in boosting functional restoration need to be dissected by further work.

5.
Crit Rev Food Sci Nutr ; 60(3): 351-374, 2020.
Article in English | MEDLINE | ID: mdl-30614244

ABSTRACT

Brain is a central and pivotal organ of human body containing the highest lipids content next to adipose tissue. It works as a monitor for the whole body and needs an adequate supply of energy to maintain its physiological activities. This high demand of energy in the brain is chiefly maintained by the lipids along with its reservoirs. Thus, the lipid metabolism is also an important for the proper development and function of the brain. Being a prominent part of the brain, lipids play a vast number of physiological activities within the brain starting from the structural development, impulse conduction, insulation, neurogenesis, synaptogenesis, myelin sheath formation and finally to act as the signaling molecules. Interestingly, lipids bilayer also maintains the structural integrity for the physiological functions of protein. Thus, in light to all of these activities, lipids and its metabolism can be attributed pivotal for brain health and its activities. Decisively, the impaired/altered metabolism of lipids and its intermediates puts forward a key step in the progression of different brain ailments including neurodegenerative, neurological and neuropsychiatry disorders. Depending on their associated underlying pathways, they serve as the potential biomarkers of these disorders and are considered as necessary diagnostic tools. The present review discusses the role and level of altered lipids metabolism in brain diseases including neurodegenerative diseases, neurological diseases, and neuropsychiatric diseases. Moreover, the possible mechanisms of altered level of lipids and their metabolites have also been discussed in detail.


Subject(s)
Brain Diseases/metabolism , Lipid Metabolism , Lipids/analysis , Biomarkers/analysis , Biomarkers/metabolism , Brain/metabolism , Brain/pathology , Brain Diseases/pathology , Humans
6.
Pak J Pharm Sci ; 32(4(Supplementary)): 1761-1766, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31680070

ABSTRACT

Peripheral nerve injury is a complex condition which results in restricted physical activity. Despite the tremendous efforts to figure out effective remedies, the complete functional retrieval is still a goal to be achieved. So, the need of hour is the exploration of potential natural compounds to recover this functional loss. Here, we have investigated the role of a local plant "Neurada procumbens" in ameliorating the functional recovery after an induced nerve compression injury in a mouse model. A dose of N. procumbens (50mg/kg of body weight) was administered orally from the day of injury to onwards. The motor functional recovery was assessed by evaluating muscle grip strength and sciatic functional index; while the sensory functions were gauged by the hotplate test. The serological parameters were carried out to analyze the effect of N. procumbens on oxidative stress level. The recovery of sensory and motor functions was significantly improved and perceived earlier in the treatment group. Moreover, the elevated antioxidant level was statistically significant in the treatment group. These results indicate that the supplementation of N. procumbens accelerates functional recovery after sciatic nerve crush injury.


Subject(s)
Peripheral Nerve Injuries/drug therapy , Plant Preparations/pharmacology , Recovery of Function/drug effects , Sciatic Nerve/drug effects , Sciatic Neuropathy/drug therapy , Animals , Antioxidants/pharmacology , Disease Models, Animal , Mice , Motor Activity/drug effects , Nerve Regeneration/drug effects , Oxidative Stress/drug effects
7.
J Food Biochem ; 43(9): e12983, 2019 09.
Article in English | MEDLINE | ID: mdl-31489666

ABSTRACT

Peripheral nerve injury is one of the major health concerns of the present era which can lead to the long-lasting disability and even demise. Currently, no effective and side effect free remedy exists and exploration of effective therapeutic strategies to regain functional outcome is a need of hour. In the present study, we used BALB/c mice (N = 14 age, 10-12 weeks & weight 32-34 g) that were divided into two groups: Normal chow (n = 7) and Fennel chow (n = 7) group. Here, we have explored the role of crude Foeniculum vulgare mill seeds in promoting functional recovery following a mechanical insult to the sciatic nerve by an oral administration of a crude dose of 500 mg/kg BW. The recovery of both sensory and motor functions was significantly (p > .05) accelerated in the treatment group, assessed by behavioral analyses alongside total antioxidant capacity increase. Conclusively, F. vulgare can be a potential therapeutic candidate for accelerating functional recovery after peripheral nerve injury. PRACTICAL APPLICATIONS: The outcomes of study have vital practical application both for scientists and consumers. The therapeutic role of phytochemicals on functional recovery has not been explored yet. This study will help figure out plant based regimen as booster for brain health and intervention against traumatic nerve injuries. Moreover, it may also attract the food and pharmaceutical industries to formulate cost effective therapeutic products. Likewise, it can prove instrumental for scientists for advance research on this aspect with more mechanistic targets.


Subject(s)
Foeniculum , Oxidative Stress , Sciatic Neuropathy/drug therapy , Animal Feed , Animals , Body Weight , Diet , Dietary Supplements , Eating , Male , Mice , Mice, Inbred BALB C
8.
Lipids Health Dis ; 18(1): 26, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30683111

ABSTRACT

Brain is a vital organ of the human body which performs very important functions such as analysis, processing, coordination, and execution of electrical signals. For this purpose, it depends on a complex network of nerves which are ensheathed in lipids tailored myelin; an abundant source of lipids in the body. The nervous system is enriched with important classes of lipids; sphingolipids and cholesterol which compose the major portion of the brain particularly in the form of myelin. Both cholesterol and sphingolipids are embedded in the microdomains of membrane rafts and are functional units of the neuronal cell membrane. These molecules serve as the signaling molecules; hold important roles in the neuronal differentiation, synaptogenesis, and many others. Thus, their adequate provision and active metabolism are of crucial importance in the maintenance of physiological functions of brain and body of an individual. In the present review, we have highlighted the physiological roles of cholesterol and sphingolipids in the development of the nervous system as well as the association of their altered metabolism to neurological and neurodegenerative diseases.


Subject(s)
Brain/growth & development , Cholesterol/metabolism , Nervous System Diseases/genetics , Sphingolipids/metabolism , Animals , Brain/metabolism , Cell Membrane/genetics , Cholesterol/genetics , Humans , Lipids/genetics , Membrane Microdomains/genetics , Myelin Sheath/genetics , Myelin Sheath/metabolism , Nervous System Diseases/metabolism , Nervous System Diseases/physiopathology , Neurons/metabolism , Neurons/pathology , Sphingolipids/genetics
9.
J Wildl Dis ; 55(1): 129-135, 2019 01.
Article in English | MEDLINE | ID: mdl-29953314

ABSTRACT

Toxoplasma gondii is a protozoan parasite of veterinary and human public health importance for which birds act as an intermediate host. No information is available about the epidemiology of T. gondii in wild birds of Pakistan. The present study was designed to determine the seroprevalence and risk factors associated with T. gondii antibodies in wild birds of District Kasur, Punjab Province, Pakistan. A total of 200 wild birds of 28 species were captured from four tehsils (administrative subdistricts of districts) of the district Kasur and their serum samples screened for the presence of T. gondii antibodies using a latex agglutination test (cut-off value: 1:64). Twenty-five (13%) individual birds and 13 (46%) of the bird species were seropositive for T. gondii antibodies. There were statistical differences in T. gondii prevalence between adults and young (15% and 7%, respectively, P=0.001) and healthy and sick (11% and 50%, respectively, P=0.000) while there were not differences between genders, sites, urbanicity, and tehsils. The present study provides evidence of T. gondii antibodies in wild birds of Pakistan.


Subject(s)
Animals, Wild , Bird Diseases/parasitology , Birds/blood , Toxoplasma , Toxoplasmosis, Animal/epidemiology , Animals , Antibodies, Protozoan , Bird Diseases/epidemiology , Pakistan/epidemiology , Risk Factors , Seroepidemiologic Studies , Toxoplasmosis, Animal/blood
10.
Molecules ; 23(4)2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29614843

ABSTRACT

Neurodegeneration is a progressive loss of neuronal cells in certain regions of the brain. Most of the neurodegenerative disorders (NDDs) share the communal characteristic such as damage or reduction of various cell types typically including astrocytes and microglial activity. Several compounds are being trialed to treat NDDs but they possess solitary symptomatic advantages along with copious side effects. The finding of more enthralling and captivating compounds to suspend and standstill the pathology of NDDs will be considered as a hallmark of present times. Phytochemicals possess the potential to alternate the synthetic line of therapy against NDDs. The present review explores the potential efficacy of plant-derived flavonoids against most common NDDs including Alzheimer's disease (AD) and Parkinson's disease (PD). Flavonoids are biologically active phytochemicals which possess potential pharmacological effects, including antiviral, anti-allergic, antiplatelet, anti-inflammatory, anti-tumor, anti-apoptotic and anti-oxidant effects and are able to attenuate the pathology of various NDDs through down-regulating the nitric oxide (NO) production, by reducing the tumor necrosis factor-α (TNF-α), by reducing the excitotoxicity of superoxide as well as acting as tyrosine kinase (TK) and monoamine oxidase (MAO) inhibiting enzyme.


Subject(s)
Alzheimer Disease/drug therapy , Flavonoids/therapeutic use , Parkinson Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Antioxidants/therapeutic use , Humans , Monoamine Oxidase/metabolism , Parkinson Disease/metabolism , Tumor Necrosis Factor-alpha/metabolism
11.
Open Microbiol J ; 9: 26-32, 2015.
Article in English | MEDLINE | ID: mdl-26668658

ABSTRACT

The development of resistance in bacteria against commonly used antibiotics/drugs is of considerable medical significance. Aim of this study was to determine the microbial load of un-pasteurized packed fruit juices sold in Lahore city and to determine antibacterial activity of five different honey samples against isolated bacteria. Unpasteurized fruit juice samples (n=60) were collected from street vendors. All the samples were subjected to Total viable count (TVC), Staphylococcal count (SC) and Coliform count (CC). One hundred and ten strains of bacteria were isolated from various fruit juices and identified on the basis of cultural characters, morphology and biochemical characters. Mean TVCs, SCs and CCs of juices (6.80±1.91, 5.45±1.06 and 3.25±1.25 log10 CFU/ml respectively) were non-significant with standard permissible limits (p<0.05). Among all the fruit juices, 66.66% of samples had TVC more than 4 log10 CFU/ml, 51.66% of samples had SC more than 3 log10 CFU/ml and 46.66% of samples had CC more than 2 log10 CFU/ml. Among the bacillus isolates purified, were Bacillus alvei, Bacillus subtilis, Bacillus polymyxa, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumonia, Escherichia coli and Enterobecter. All five different types of honey samples used in this study showed antibacterial activity against B. alvei, B. polymyxa, B. subtilis and S. aureus and no activity against P. aeruginosa, K. pneumonia, Enterobecter and E. coli. It is concluded that microbial load in unpasteurized fruit juices is significantly higher than standard permissible limits which insinuates its possible role in spoilage and food borne illnesses. Periodic monitoring of packed fruit juices should be carried out to make them safe for consumption. Honey can be used as an alternative for treatment of various infections, especially those caused by antibiotic resistant bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...