Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(10)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37894180

ABSTRACT

A variety of foods fermented with lactic acid bacteria (LAB) serve as dietary staples in many countries. The incorporation of health-promoting probiotics into fermented milk products can have profound effects on human health. Considering the health benefits of Yakult, the current study was undertaken to develop an enriched Yakult-like fermented skimmed milk drink by the addition of two probiotic strains, namely Lacticaseibacillus casei (Lc) and Lacticaseibacillus rhamnosus (Lr). The prepared drinks were compared in terms of various parameters, including their physicochemical properties, proximate chemical composition, mineral estimation, microbial viable count, antioxidant activity, and sensory evaluation. Each strain was employed at five different concentrations, including 1% (T1), 1.5% (T2), 2% (T3), 2.5% (T4), and 3% (T5). The prepared Yakult samples were stored at 4 °C and analyzed on days 0, 7, 14, 21, and 28 to evaluate biochemical changes. The findings revealed that the concentration of the starter culture had a significant (p ≤ 0.05) impact on the pH value and moisture and protein contents, but had no marked impact on the fat or ash content of the developed product. With the Lc strain, Yakult's moisture content ranged from 84.25 ± 0.09 to 85.65 ± 0.13%, whereas with the Lr strain, it was from 84.24 ± 0.08 to 88.75 ± 0.13%. Protein levels reached their highest values with T5 (3% concentration). The acidity of all treatments increased significantly due to fermentation and, subsequently, pH showed a downward trend (p ≤ 0.05). The total soluble solids (TSS) content decreased during storage with Lc as compared to Lr, but the presence of carbohydrates had no appreciable impact. The drink with Lc exhibited a more uniform texture and smaller pore size than Yakult with Lr. Except for the iron values, which showed an increasing trend, the contents of other minerals decreased in increasing order of the added probiotic concentration used: 1% (T1), 1.5% (T2), 2% (T3), 2.5% (T4), and 3% (T5). The highest lactobacilli viable count of 8.69 ± 0.43 colony-forming units (CFU)/mL was observed with the T1 Lr-containing drink at the end of the storage period. Regarding the storage stability of the drink, the highest value for DPPH (88.75 ± 0.13%) was found with the T1 Lc drink on day 15, while the highest values for FRAP (4.86 ± 2.80 mmol Fe2+/L), TPC (5.97 ± 0.29 mg GAE/mL), and TFC (3.59 ± 0.17 mg GAE/mL) were found with the T5 Lr drink on day 28 of storage. However, the maximum value for ABTS (3.59 ± 0.17%) was noted with the T5 Lr drink on the first day of storage. The results of this study prove that Lc and Lr can be used in dairy-based fermented products and stored at refrigerated temperatures.

2.
Appl Biosaf ; 27(1): 33-41, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-36032320

ABSTRACT

Introduction: Healthcare organizations are complex systems where healthcare professionals, patients, biological materials, and equipment constantly interact and provide feedback with highly consequential outcomes. These are the characteristics of a complex adaptive system. Healthcare delivery requires coordination but it necessarily relies on delegation of essential functions. It is thus essential to have an engaged workforce to ensure optimal outcomes for patients. Thus human performance factors play a key role in ensuring both the presence of excellent healthcare provision and the absence of outcomes that must be avoided-"never events." Methods: The commitment of management was a precondition for the implementation of the high-reliability organization (HRO) principles. A team from middle management was engaged and provided with appropriate management tools for identifying, prioritizing, assessing, and applying solutions for the safety concern in their operating systems. Results: This article documents efforts at the National Institute of Health (NIH) to adapt the principles of HROs to diagnostic laboratories and vaccine production facilities at its campus in Islamabad, Pakistan, and seeks to draw some lessons for how this approach can be usefully replicated in such facilities elsewhere. Conclusion: Public health institutes such as NIH deliver vital products and services that are inherently risky to produce, where the consequence of failure can be catastrophic. Adopting the HRO principles is an approach to improving not just safety, but also the overall organizational performance in any setting, including low-resource settings, and can serve as an implementable process for other institutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...