Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Cancer Cell Int ; 24(1): 24, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200472

ABSTRACT

BACKGROUND: Single nucleotide polymorphisms (SNPs) have been linked with prostate cancer (PCa) and have shown potential as prognostic markers for advanced stages. Loss of function mutations in PKCι have been linked with increased risk of malignancy by enhancing tumor cell motility and invasion. We have evaluated the impact of two coding region SNPs on the PKCι gene (PRKCI) and their prognostic potential. METHODS: Genotypic association of non-synonymous PKCι SNPs rs1197750201 and rs1199520604 with PCa was determined through tetra-ARMS PCR. PKCι was docked with interacting partner Par-6 to determine the effect of these variants on PKCι binding capabilities. Molecular dynamic simulations of PKCι docked with Par-6 were performed to determine variant effects on PKCι protein interactions. The possible impact of changes in PKCι protein interactions on epithelial cell polarity was hypothesized. RESULTS: PKCι rs1199520604 mutant genotype TT showed association with PCa (p = 0.0055), while rs1197750201 mutant genotype AA also showed significant association with PCa (P = 0.0006). The binding interaction of PKCι with Par-6 was altered for both variants, with changes in Van der Waals energy and electrostatic energy of docked structures. CONCLUSION: Genotypic analysis of two non-synonymous PKCι variants in association with PCa prognosis was performed. Both variants in the PB1 domain showed potential as a prognostic marker for PCa. In silico analysis of the effect of the variants on PKCι protein interactions indicated they may be involved in PCa progression through aberration of epithelial cell polarity pathways.

2.
Int J Dent ; 2023: 7631634, 2023.
Article in English | MEDLINE | ID: mdl-38021347

ABSTRACT

Background: The zygomatic complex is the second most common fracture of the facial bones after the nasal bone. The prominent convex shape of the zygoma makes it vulnerable to traumatic injury. Diplopia is one of the serious complications of zygomatic complex fracture and is a common subjective complaint. Objective: To determine the frequency of diplopia in zygomatic complex fractures. Methodology. A cross-sectional descriptive study was conducted at the Oral and Maxillofacial Surgery Ward, Civil Hospital, Karachi, Pakistan. The duration of the study was 1 year (March 1, 2021 to February 28, 2022). A total of 126 patients having zygomatic complex fractures were included in this study. After recording the patient's complete history, like demographic details and cause for fracture, diplopia was examined clinically. If, during the examination, the patient complained of double vision, this was labeled as diplopia positive (Yes) and negative (No) if the patient did not have any such complain. Data were statistically analyzed. Results: The mean (±SD) age of patients was 33.42 (±9.27), with 91 (72.2%) male patients and 35 (27.8%) female patients. The frequency of diplopia in zygomatic complex fractures was observed in 52 (41.3%) patients. The rate of diplopia was significantly high in patients aged between 31 and 40 years (P-value=0.0005). Conclusion: The frequency of diplopia among patients having zygomatic complex fractures was high in this study. Thus, forming a strategy to properly diagnose and treat it and to prevent persistent morbidity to improve patient's quality of life is recommended.

4.
J Ovarian Res ; 16(1): 202, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833790

ABSTRACT

BACKGROUND: Gynecologic cancers comprise malignancies in the female reproductive organs. Ovarian cancer ranks sixth in terms of incidence rates while seventh in terms of mortality rates. The stage at which ovarian cancer is diagnosed mainly determines the survival outcomes of patients. Various screening approaches are presently employed for diagnosing ovarian cancer; however, these techniques have low accuracy and are non-specific, resulting in high mortality rates of patients due to this disease. Hence, it is crucial to identify improved screening and diagnostic markers to overcome this cancer. This study aimed to find new biomarkers to facilitate the prognosis and diagnosis of ovarian cancer. METHODS: Bioinformatics approaches were used to predict the tertiary structure and cellular localization along with phylogenetic analysis of TPD52. Its molecular interactions were determined through KEGG analysis, and real-time PCR-based expression analysis was performed to assess its co-expression with another oncogenic cellular pathway (miR-223, KLF9, and PKCε) proteins in ovarian cancer. RESULTS: Bioinformatics analysis depicted the cytoplasmic localization of TPD52 and the high conservation of its coiled-coil domains. Further study revealed that TPD52 mRNA and miRNA-223 expression was elevated, while the expression of KLF 9 and PKCε was reduced in the blood of ovarian cancer patients. Furthermore, TPD52 and miR-223 expression were upregulated in the early stages of cancer and non-metastatic cancers. CONCLUSION: TPD52, miR-223, PKCε, and KLF9, can be used as a blood based markers for disease prognosis, metastasis, and treatment response. The study outcomes hold great potential to be translated at the clinical level after further validation on larger cohorts.


Subject(s)
Kruppel-Like Transcription Factors , MicroRNAs , Neoplasm Proteins , Ovarian Neoplasms , Protein Kinase C-epsilon , Female , Humans , Kruppel-Like Transcription Factors/genetics , MicroRNAs/genetics , Neoplasm Proteins/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phylogeny , Protein Kinase C-epsilon/genetics
5.
BMC Cancer ; 23(1): 819, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37667176

ABSTRACT

BACKGROUND: Protein Kinase C-epsilon (PKCε) is a member of the novel subfamily of PKCs (nPKCs) that plays a role in cancer development. Studies have revealed that its elevated expression levels are associated with cervical cancer. Previously, we identified pathogenic variations in its different domains through various bioinformatics tools and molecular dynamic simulation. In the present study, the aim was to find the association of its variants rs1553369874 and rs1345511001 with cervical cancer and to determine the influence of these variants on the protein-protein interactions of PKCε, which can lead towards cancer development and poor survival rates. METHODS: The association of the variants with cervical cancer and its clinicopathological features was determined through genotyping analysis. Odds ratio and relative risk along with Fisher exact test were calculated to evaluate variants significance and disease risk. Protein-protein docking was performed and docked complexes were subjected to molecular dynamics simulation to gauge the variants impact on PKCε's molecular interactions. RESULTS: This study revealed that genetic variants rs1553369874 and rs1345511001 were associated with cervical cancer. Smad3 interacts with PKCε and this interaction promotes cervical cancer angiogenesis; therefore, Smad3 was selected for protein-protein docking. The analysis revealed PKCε variants promoted aberrant interactions with Smad3 that might lead to the activation of oncogenic pathways. The data obtained from this study suggested the prognostic significance of PRKCE gene variants rs1553369874 and rs1345511001. CONCLUSION: Through further in vitro and in vivo validation, these variants can be used at the clinical level as novel prognostic markers and therapeutic targets against cervical cancer.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/genetics , Protein Kinase C-epsilon/genetics , Prognosis , Computational Biology , Molecular Dynamics Simulation
6.
Sci Rep ; 13(1): 12504, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37532886

ABSTRACT

Hepatocellular carcinoma is a leading cause of cancer-related deaths due to its complexity in diagnosis, chemo-resistance, and aggressive nature. Identifying pathogenic single nucleotide polymorphism (SNP) in protein kinase C iota (PKCι) can be a potential biomarker in the prognosis and treatment of HCC. This study investigated the association between a SNP in PRKCI and the Pakistani population's hepatocellular carcinoma (HCC) risk. Obtained samples were first evaluated for ALT measurements and viral load quantification through reverse transcriptase-PCR. The PKCι nsSNP rs1199520604 was evaluated computationally by multiple consensus bioinformatics tools for predicting its potential deleterious effects. Its association with hepatitis C virus- (HCV) mediated HCC was then investigated through ARMS-PCR (Amplification Refractory Mutation System Polymerase Chain Reaction). SNP analysis of rs1199520604 was performed in 100 cases and 100 controls. Variant rs1199520604's homozygous T genotype is a risk factor allele for the HCV-induced HCC (odds ratio: 4.13, relative risk: 2.01, P-value < 0.0001). The heterozygous genotype is determined to protect HCV patients from HCC development (P < 0.001). The study highlighted the disease association of variant rs1199520604 with HCV-induced HCC in the Pakistani populations. This variant, after further validation through high-throughput investigation on a larger cohort, has the potential to be translated at the clinical level.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Hepacivirus/genetics , Liver Neoplasms/pathology , Polymorphism, Single Nucleotide , Hepatitis C/complications , Hepatitis C/genetics , Genotype , Case-Control Studies , Genetic Predisposition to Disease
7.
Cancer Cell Int ; 23(1): 123, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37344815

ABSTRACT

BACKGROUND: PRKCG encodes PKC γ, which is categorized under the classical protein kinase C family. No studies have specifically established the relationship between PRKCG nsSNPs with structural and functional variations in PKC γ in the context of hepatocellular carcinoma (HCC). The present study aims to uncover this link through in-silico and experimental studies. METHODS: The 3D structure of PKC γ was predicted. Molecular Dynamic (MD) Simulations were run and estimates were made for interactions, stability, conservation and post-translational alterations between wild and mutant structures. The association of PRKCG levels with HCC survival rate was determined. Genotyping analyses were conducted to investigate the deleterious PRKCG nsSNP association with HCC. mRNA expression of PKC γ, HIF-1 alpha, AKT, SOCS3 and VEGF in the blood of controls and HCC patients was analyzed and a genetic cascade was constructed depicting these interactions. RESULTS: The expression level of studied oncogenes was compared to tumour suppressor genes. Through Alphafold, the 3D structure of PKC γ was explored. Fifteen SNPs were narrowed down for in-silico analyses that were identified in exons 5, 10 and 18 and the regulatory and kinase domain of PKC γ. Root mean square deviation and fluctuation along with the radius of gyration unveiled potential changes between the wild and mutated variant structures. Mutant genotype AA (homozygous) corresponding to nsSNP, rs386134171 had more frequency in patients with OR (2.446), RR (1.564) and P-values (< 0.0029) that highlights its significant association with HCC compared to controls in which the wild genotype GG was found more prevalent. CONCLUSION: nsSNP rs386134171 can be a genetic marker for HCC diagnosis and therapeutic studies. This study has laid down a road map for future studies to be conducted on HCC.

8.
Pathogens ; 12(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36986315

ABSTRACT

Hepatitis E is a liver inflammation caused by infection with the hepatitis E virus (HEV). Every year, there are an estimated 20 million HEV infections worldwide, leading to an estimated 3.3 million symptomatic cases of hepatitis E. HEV viral load has been studied about the disease progression; however, hepatic the host gene expression against HEV infection remains unknown. Methods: We identified the expression profiles of hepatic immune response genes in HEV infections. Fresh blood samples were collected from all the study subjects (130 patients and 124 controls) in 3ml EDTA vacutainers. HEV viral load was determined by a real-time PCR. The total RNA was isolated from the blood using the TRIZOL method. The expression of theCCL2, CCL5, CXCL10, CXCL16, TNF, IFNGR1, and SAMSN1 genes was studied in the blood of 130 HEV patients and 124 controls using a real-time PCR. Results: Gene expression profiles indicate high levels of CCL2, CCL5, CXCL10, CXCL16, TNF, IFNGR1, and SAMSN1 genes that might lead to the recruitment of leukocytes and infected cell apoptosis. Conclusion: Our study demonstrated distinct differences in the expression profiles of host immune response-related genes of HEV infections and provided valuable insight into the potential impact of these genes on disease progression.

9.
Genes (Basel) ; 14(2)2023 01 18.
Article in English | MEDLINE | ID: mdl-36833174

ABSTRACT

Single nucleotide polymorphisms (SNPs) are associated with many diseases including neurological disorders, heart diseases, diabetes, and different types of cancers. In the context of cancer, the variations within non-coding regions, including UTRs, have gained utmost importance. In gene expression, translational regulation is as important as transcriptional regulation for the normal functioning of cells; modification in normal functions can be associated with the pathophysiology of many diseases. UTR-localized SNPs in the PRKCI gene were evaluated using the PolymiRTS, miRNASNP, and MicroSNIper for association with miRNAs. Furthermore, the SNPs were subjected to analysis using GTEx, RNAfold, and PROMO. The genetic intolerance to functional variation was checked through GeneCards. Out of 713 SNPs, a total of thirty-one UTR SNPs (three in 3' UTR region and twenty-nine in 5' UTR region) were marked as ≤2b by RegulomeDB. The associations of 23 SNPs with miRNAs were found. Two SNPs, rs140672226 and rs2650220, were significantly linked with expression in the stomach and esophagus mucosa. The 3' UTR SNPs rs1447651774 and rs115170199 and the 5' UTR region variants rs778557075, rs968409340, and 750297755 were predicted to destabilize the mRNA structure with substantial change in free energy (∆G). Seventeen variants were predicted to have linkage disequilibrium with various diseases. The SNP rs542458816 in 5' UTR was predicted to put maximum influence on transcription factor binding sites. Gene damage index(GDI) and loss of function (o:e) ratio values for PRKCI suggested that the gene is not tolerant to loss of function variants. Our results highlight the effects of 3' and 5' UTR SNP on miRNA, transcription and translation of PRKCI. These analyses suggest that these SNPs can have substantial functional importance in the PRKCI gene. Future experimental validation could provide further basis for the diagnosis and therapeutics of various diseases.


Subject(s)
MicroRNAs , Neoplasms , Protein Kinase C , Humans , 3' Untranslated Regions , 5' Untranslated Regions , Gene Expression Regulation , MicroRNAs/genetics , Neoplasms/genetics , Polymorphism, Single Nucleotide , Protein Kinase C/genetics
10.
BMC Cancer ; 23(1): 147, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36782184

ABSTRACT

BACKGROUND: The protein kinase C (PKC) family of serine/threonine kinases contains more than ten isozymes that are involved in multiple signaling pathways, including cell cycle regulation and carcinogenesis. The PKCε isozyme is an oncogene known to be upregulated in various signaling pathways involved in hepatitis C virus (HCV)-induced hepatocellular carcinoma (HCC). However, there is no known association of missense SNPs in PKCε with this disease, which can be a potential biomarker for early diagnosis and treatment. This research reveals a novel missense SNP in PKCε that is associated with HCV-induced HCC in the Pakistani population. METHODS: The PKCε SNP with amino acid substitution of E14K was chosen for wet lab analysis. Tetra ARMS-PCR was employed for the identification of high-risk SNP in PKCε of HCV-induced HCC patients. Liver function testing was also performed for comparison between the liver condition of the HCC patient and control group, and the viral load of HCC patient samples was evaluated to determine any alteration in the viral infectivity between different genotypes of the selected high-risk PKCε variant SNP. RESULTS: Frequency distribution of the homozygous GG genotype was found to be highest among HCV-induced HCC patients and was also found to be significantly associated with disease development and progression. The p values of comparative data obtained for the other two genotypes, heterozygous AG and homozygous AA, of the SNP also showed the significance of the data for these alleles. Still, their odds ratio and relative risk analysis did not indicate their association with HCV-induced HCC. CONCLUSION: The distribution of a genotype GG of PKCε has been found in HCV- induced HCC patients. Therefore, these PKCε SNP have the potential to be biomarkers for HCV-induced HCC. Further investigation using a larger sample size would provide additional insight into these initial data and open a new avenue for a better prognosis of this disease.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Liver Neoplasms , Protein Kinase C-epsilon , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Hepacivirus , Hepatitis C/complications , Hepatitis C/genetics , Liver Neoplasms/pathology , Liver Neoplasms/virology , Polymorphism, Single Nucleotide , Protein Kinase C-epsilon/genetics , Mutation, Missense
11.
J Gene Med ; 25(6): e3483, 2023 06.
Article in English | MEDLINE | ID: mdl-36786034

ABSTRACT

BACKGROUND: Polypropylene is a thermoplastic polymer playing the role of an endocrine disruptor that interferes with the union, emission, transport or elimination of normal hormones. Epidemiological information indicated the relation of endocrine-disturbing chemicals with prostate cancer, testis tumor and diminished fertility. p53 is a key tumor silencer gene. The present study aimed to evaluate luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels and the risk of p53 mutations as a result of exposure to polypropylene in non-tumorous adult male factory workers. METHODS: In total, 150 (controls = 35, workers = 115) subjects were recruited. Groups were maintained according to the tenure of exposure G1 (1-5 years), G2 (6-10 years), G3 (11-15 years) and G4 (16-20 years). Concentrations of LH and FSH were determined through an enzyme-linked immunosorbent assay. Genotyping analysis was performed by polymerase chain reaction based gel electrophoresis followed by DNA sequencing. The structural and functional impact of the mutation on the p53 structure was evaluated using 50-ns molecular dynamics (MD) simulations and protein-DNA docking. RESULTS: Mean plasma LH levels were significantly decreased in G1 (p > 0.05) as well as the G2, G3 and G4 (p > 0.001) groups. Similarly, FSH levels were significant decrease in G1 (p > 0.05), G2 (p > 0.01), G3 (p > 0.001) and G4 (p > 0.001) compared to the control group. Sequencing results found three variants i.e. g.13450 T>G, g.13430C>T and g.13737G>A. One of them was predicted to be disease-causing others are polymorphisms. MD simulation of missense mutation R273H showed no structural impact on the protein structure in MD simulation, but it resulted in weaker binding of p53 with the DNA that might lower the gene expression of cell cycle regulatory proteins. CONCLUSIONS: These findings predict decreased fertility and risk of malignancies in the future. The spectrum of p53 mutations as a result of polypropylene exposure in the Pakistani population has not been investigated before. Further studies and meta-analyses are required to elucidate the role of different plasticizers in reproduction and cancer-causing risk factors in a larger population.


Subject(s)
Follicle Stimulating Hormone , Neoplasms , Adult , Male , Humans , Polypropylenes/adverse effects , Genes, p53 , Tumor Suppressor Protein p53/genetics , Luteinizing Hormone , Mutation
12.
Genes (Basel) ; 14(1)2023 01 16.
Article in English | MEDLINE | ID: mdl-36672978

ABSTRACT

Ovarian cancer has the highest mortality rate among gynecologic malignancies, owing to its misdiagnosis or late diagnosis. Identification of its genetic determinants could improve disease outcomes. Conventional Protein Kinase C-γ (PKCγ) dysregulation is reported in several cancers. Similarly, its variant rs1331262028 is also reported to have an association with hepatocellular carcinoma. Therefore, the aim of the present study was to analyze the variant rs1331262028 association with ovarian cancer and to determine its impact on PKCγ's protein interactions. Association of variation was determined through genotyping PCR (cohort size:100). Protein-protein docking and molecular dynamic simulation were carried out to study the variant impact of PKCγ interactions. The study outcome indicated the positive association of variant rs1331262028 with ovarian cancer and its clinicopathological features. Molecular dynamics simulation depicted the potential influence of variation on PKCγ molecular signaling. Hence, this study provided the foundations for assessing variant rs1331262028 as a potential prognostic marker for ovarian cancer. Through further validation, it can be applied at the clinical level.


Subject(s)
Ovarian Neoplasms , Signal Transduction , Humans , Female , Virulence , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Biomarkers
13.
AMB Express ; 12(1): 156, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36520322

ABSTRACT

Acacia hydaspica possesses varied pharmacological attributes. We aimed to examine the antimicrobial potential and isolate the active antimicrobial metabolites. The plant extract was fractionated and the antimicrobial activity of the crude extract, fractions and compounds was tested by agar well diffusion and agar tube dilution and broth dilution methods. Bacterial strains selected for bioactivity testing were Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii while selected strains from kingdom fungi were Candida albicans, Cryptococcus neoformans, Fusarium solani and Aspergillus. The active compounds were isolated from Acacia hydaspica by bioassay-guided fractionation and identified by nuclear magnetic resonance and spectroscopic techniques. S. aureus cell surface proteins, Autolysins (Atl), Clumping factor A (ClfA), and Fibronectin Binding Proteins (FnBP), were molecularly docked with Catechin 3-O-gallate (CG) and Methyl gallate (MG) and binding energy and molecular interactions between the proteins and compounds were analyzed. Ethyl acetate (AHE) and Butanol (AHB) fractions of A. hydaspica were the most active fractions against tested microbial strains. Therefore, both were subjected to bioassay-directed fractionation which led to the isolation of one pure active antimicrobial AHE and one active pure compound from AHB fraction besides active enriched isolates. Methyl-gallate (MG) and catechin-3-gallate (CG) are active compounds extracted from AHE and AHB fractions respectively. In antibacterial testing MG significantly inhibited the growth of E. coli (MIC50 = 21.5 µg/ml), B. subtilus (MIC50 = 23 µg/ml) and S. aureus (MIC50 = 39.1 µg/ml) while moderate to low activity was noticed against other tested bacterial strains. Antifungal testing reveals that MG showed potent antifungal activity against F. solani (MIC50 = 33.9 µg/ml) and A. niger (MIC50 = 41.5 µg/ml) while lower antifungal activity was seen in other tested strains. AHB fractions and pure compound (CG) showed specific antibacterial activity against S. aureus only (MIC50 = 10.1 µg/ml) while compound and enriched fractions showed moderate to no activity against other bacterial and fungal strains respectively. Molecular docking analysis revealed that CG interacted more strongly with the cell surface proteins than MG. Among these proteins, CG made a stronger complex with ClfA (binding affinity - 9.7) with nine hydrophobic interactions and five hydrogen bonds. Methyl gallate (MG) and catechin 3-O-gallate (CG) are the major antimicrobial compound from A. hydaspica that inhibit the growth of specific microbes. The occurrence of MG and CG endorse the traditional antimicrobial applicability of A. hydaspica, and it can be a legitimate alternative to control specific microbial infections.

14.
Biomark Res ; 10(1): 87, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36451234

ABSTRACT

BACKGROUND: HCC is a major health concern worldwide. PKC gamma, a member of the conventional PKC subclass, is involved in many cancer types, but the protein has received little attention in the context of single nucleotide polymorphisms and HCC. Therefore, the study aims to investigate the association of PKC gamma missense SNP with HCV-induced hepatocellular carcinoma. METHODS: The PKC gamma nsSNPs were retrieved from the ENSEMBL genome browser and the deleterious nsSNPs were filtered out through involvingPredictSNP2, CADD, DANN, FATHMM, FunSeq2 and GWAVA. Among the filtered nsSNPs, nsSNP rs1331262028 was identified to be the most pathogenic one. Through involving I-TASSER, ProjectHOPE, I-Mutant, MUpro, mCSM, SDM, DynaMut and MutPred, the influence of SNP rs1331262028 on protein structure, function and stability was estimated. A molecular Dynamic simulation was run to determine the conformational changes in mutant protein structure compared to wild. The blood samples were collected for genotyping analysis and for assessing ALT levels in the blood. RESULTS: The study identified for the first time an SNP (rs1331262028) of PRKCG to strongly decrease protein stability and induce HCC. The RMSD, RMSF, and Rg values of mutant and wild types found were significantly different. Based on OR and RR values of 5.194 and 2.287, respectively, genotype analysis revealed a higher correlation between the SNP homozygous wild Typeform, AA, and the disease while patients with genotype AG have higher viral load. CONCLUSION: Outcomes of the current study delineated PKC gamma SNP rs1331262028 as a genetic marker for HCV-induced HCC that could facilitate disease management after further validation.

15.
PeerJ ; 10: e14124, 2022.
Article in English | MEDLINE | ID: mdl-36452073

ABSTRACT

Background: Breast cancer is the second leading cause of cancer-related deaths globally, and its prevalence rates are increasing daily. In the past, studies predicting therapeutic drug targets for cancer therapy focused on the assumption that one gene is responsible for producing one protein. Therefore, there is always an immense need to find promising and novel anti-cancer drug targets. Furthermore, proteases have an integral role in cell proliferation and growth because the proteolysis mechanism is an irreversible process that aids in regulating cellular growth during tumorigenesis. Therefore, an inactive rhomboid protease known as iRhom2 encoded by the gene RHBDF2 can be considered an important target for cancer treatment. Speculatively, previous studies on gene expression analysis of RHBDF2 showed heterogenous behaviour during tumorigenesis. Consistent with this, several studies have reported the antagonistic role of iRhom2 in tumorigenesis, i.e., either they are involved in negative regulation of EGFR ligands via the ERAD pathway or positively regulate EGFR ligands via the EGFR signalling pathway. Additionally, different opinions suggest iRhom2 mediated cleavage of EGFR ligands takes place TACE dependently or TACE independently. However, reconciling these seemingly opposing roles is still unclear and might be attributed to more than one transcript isoform of iRhom2. Methods: To observe the differences at isoform resolution, the current strategy identified isoform switching in RHBDF2 via differential transcript usage using RNA-seq data during breast cancer initiation and progression. Furthermore, interacting partners were found via correlation and enriched to explain their antagonistic role. Results: Isoform switching was observed at DCIS, grade 2 and grade 3, from canonical to the cub isoform. Neither EGFR nor ERAD was found enriched. However, pathways leading to TACE-dependent EGFR signalling pathways were more observant, specifically MAPK signalling pathways, GPCR signalling pathways, and toll-like receptor pathways. Nevertheless, it was noteworthy that during CTCs, the cub isoform switches back to the canonical isoform, and the proteasomal degradation pathway and cytoplasmic ribosomal protein pathways were significantly enriched. Therefore, it could be inferred that cub isoform functions during cancer initiation in EGFR signalling. In contrast, during metastasis, where invasion is the primary task, the isoform switches back to the canonical isoform.


Subject(s)
Breast Neoplasms , Carrier Proteins , Humans , Female , Carrier Proteins/genetics , Breast Neoplasms/genetics , ErbB Receptors/genetics , Protein Isoforms/genetics , Carcinogenesis , Intracellular Signaling Peptides and Proteins/metabolism
16.
PLoS One ; 17(10): e0275834, 2022.
Article in English | MEDLINE | ID: mdl-36215278

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common liver malignancy. Early diagnosis of HCC has always been challenging. This study aims to assess the pathogenicity and the prevalence of IL-6 -174G/C (rs1800795) and TGFß-1 +29C/T (rs1800470) polymorphisms in HCV-infected HCC patients. Experimental strategies are integrated with computational approaches to analyse the pathogenicity of the TGFß-1 +29C/T and IL-6-174 G/C polymorphisms in HCV-induced HCC. AliBaba2 was used to predict the effect of IL-6-174 G/C on transcription factor binding site in IL-6 gene. Structural changes in the mutant TGFß-1 structure were determined through project HOPE. To assess the polymorphic prevalence of IL-6 -174G/C and TGFß-1 +29C/T genotypes in HCC and control subjects, amplification refractory mutation system PCR (ARMS-PCR) was performed on 213 HCC and 216 control samples. GraphPad Prism version 8.0 was used for the statistical analysis of the results. In-silico analysis revealed the regulatory nature of both IL-6 -174G/C and TGFß-1 +29C/T polymorphisms. ARMS-PCR results revealed that the individuals carrying TT genotype for TGFß-1 gene have an increased risk of developing HCC (p<0.0001, OR = 5.403, RR = 2.062) as compared to individuals with CT and CC genotype. Similarly, GC genotype carriers for IL-6 gene exhibit an increased risk of HCC susceptibility (p<0.0001, OR = 2.276, RR = 1.512) as compared to the people carrying the GG genotype. Genotype TT of TGFß-1 gene and genotype GC of IL-6 gene are found to be associated with HCV-induced HCC. IL-6 polymorphism may alter its transcription that leads to its pathogenicity. TGFß-1 polymorphism may alter protein structure stability.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Interleukin-6 , Liver Neoplasms , Transforming Growth Factor beta1 , Alleles , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Hepatitis C/complications , Hepatitis C/genetics , Humans , Interleukin-6/genetics , Liver Neoplasms/pathology , Liver Neoplasms/virology , Polymorphism, Single Nucleotide , Transcription Factors/genetics , Transforming Growth Factor beta1/genetics
17.
Antioxidants (Basel) ; 11(10)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36290786

ABSTRACT

Cis-diamminedichloroplatinum (II) (CDDP) is a widely used antineoplastic agent with numerous associated side effects. We investigated the mechanisms of action of the indole derivative N'-(4-dimethylaminobenzylidene)-2-1-(4-(methylsulfinyl) benzylidene)-5-fluoro-2-methyl-1H-inden-3-yl) acetohydrazide (MMINA) to protect against CDDP-induced testicular damage. Five groups of rats (n = 7) were treated with saline, DMSO, CDDP, CDDP + MMINA, or MMINA. Reproductive hormones, antioxidant enzyme activity, histopathology, daily sperm production, and oxidative stress markers were examined. Western blot analysis was performed to access the expression of steroidogenic acute regulatory protein (StAR) and inflammatory biomarker expression in testis, while expression of calcium-dependent cation channel of sperm (CatSper) in epididymis was examined. The structural and dynamic molecular docking behavior of MMINA was analyzed using bioinformatics tools. The construction of molecular interactions was performed through KEGG, DAVID, and STRING databases. MMINA treatment reversed CDDP-induced nitric oxide (NO) and malondialdehyde (MDA) augmentation, while boosting the activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD) in the epididymis and testicular tissues. CDDP treatment significantly lowered sperm count, sperm motility, and epididymis sperm count. Furthermore, CDDP reduced epithelial height and tubular diameter and increased luminal diameter with impaired spermatogenesis. MMINA rescued testicular damage caused by CDDP. MMINA rescued CDDP-induced reproductive dysfunctions by upregulating the expression of the CatSper protein, which plays an essential role in sperm motility, MMINA increased testosterone secretion and StAR protein expression. MMINA downregulated the expression of NF-κB, STAT-3, COX-2, and TNF-α. Hydrogen bonding and hydrophobic interactions were predicted between MMINA and 3ß-HSD, CatSper, NF-κß, and TNFα. Molecular interactome outcomes depicted the formation of one hydrogen bond and one hydrophobic interaction between 3ß-HSD that contributed to its strong binding with MMINA. CatSper also made one hydrophobic interaction and one hydrogen bond with MMINA but with a lower binding affinity of -7.7 relative to 3ß-HSD, whereas MMINA made one hydrogen bond with NF-κß residue Lys37 and TNF-α reside His91 and two hydrogen bonds with Lys244 and Thr456 of STAT3. Our experimental and in silico results revealed that MMINA boosted the antioxidant defense mechanism, restored the levels of fertility hormones, and suppressed histomorphological alterations.

18.
RNA Biol ; 19(1): 1115-1129, 2022 01.
Article in English | MEDLINE | ID: mdl-36299231

ABSTRACT

Untranslated regions of the gene play a crucial role in gene expression regulation at mRNA and protein levels. Mutations at UTRs impact expression by altering transcription factor binding, transcriptional/translational efficacy, miRNA-mediated gene regulation, mRNA secondary structure, ribosomal translocation, and stability. PKCε, a serine/threonine kinase, is aberrantly expressed in numerous diseases such as cardiovascular disorders, neurological disorders, and cancers; its probable cause is unknown. Therefore, in the current study, the influence of PRKCE 5'-and 3'UTR variants was explored for their potential impact on its transcription and translation through several bioinformatics approaches. UTR variants data was obtained through different databases and initially evaluated for their regulatory function. Variants with regulatory function were then studied for their effect on PRKCE binding with transcription factors (TF) and miRNAs, as well as their impact on mRNA secondary structure. Study outcomes indicated the regulatory function of 73 5'UTR and 17 3'UTR variants out of 376. 5'UTR variants introduced AP1 binding sites and promoted the PRKCE transcription. Four 3'UTR variants introduced a circular secondary structure, increasing PRKCE translational efficacy. A region in 5'UTR position 45,651,564 to 45,651,644 was found where variants readily influenced the miRNA-PRKCE mRNA binding. The study further highlighted a PKCε-regulated feedback loop mechanism that induces the activity of TFs, promoting its gene transcription. The study provides foundations for experimentation to understand these variants' role in diseases. These variants can also serve as the genetic markers for different diseases' diagnoses after validation at the cell and population levels.


Subject(s)
MicroRNAs , Protein Biosynthesis , 5' Untranslated Regions , 3' Untranslated Regions , Genetic Markers , RNA, Messenger/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/metabolism , Protein Serine-Threonine Kinases , Serine/genetics , Serine/metabolism
19.
Sci Rep ; 12(1): 11749, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35817806

ABSTRACT

This study aimed to explore the mechanisms of action of a sulindac acetohydrazide derivative, N'-(4-dimethylaminobenzylidene)-2-1-(4-(methylsulfinyl) benzylidene)-5-fluoro-2-methyl-1H-inden-3-yl) acetohydrazide, against anticancer drug cisplatin induced organ damage. Using a rodent model, various markers of organ function and signaling pathways were examined and validated by molecular docking studies. The study involves five groups of animals: control, DMSO, CDDP, CDDP + DMFM, and DMFM. Biochemical enzyme activity, histopathology, tissue antioxidant, and oxidative stress markers were examined. RT-PCR and western blot analyses were conducted for the expression of inducible cyclooxygenase enzyme (COX-2), nuclear factor kappa beta (NF-κB), p65, IL-1, TNF-α, and inducible nitric oxide synthase (iNOS). Flow cytometry analysis of CD4 + TNF-α, CD4 + COX-2, and CD4 + STAT-3 cells in whole blood was performed. Structural and dynamic behavior of DMFM upon binding with receptor molecule molecular docking and dynamic simulations were performed using bioinformatics tools and software. Treatment with DMFM reversed cisplatin-induced malondialdehyde (MDA) and nitric oxide (NO) induction, whereas the activity of glutathione peroxidase (GPx), and superoxide dismutase (SOD) in the kidney, heart, liver, and brain tissues were increased. DMFM administration normalized plasma levels of biochemical enzymes. We observed a marked decline in CD4 + STAT3, TNF-α, and COX2 cell populations in whole blood after treatment with DMFM. DMFM downregulated the expression factors related to inflammation at the mRNA and protein levels, i.e., IL-1, TNF-α, iNOS, NF-κB, STAT-3, and COX-2. Dynamic simulations and in silico docking data supports the experimental findings. Our experimental and in silico results illustrated that DMFM may affect protective action against cisplatin-induced brain, heart, liver, and kidney damage via reduction of inflammation and ROS.


Subject(s)
Antioxidants , Cisplatin , Antioxidants/metabolism , Antioxidants/pharmacology , Cisplatin/adverse effects , Cisplatin/metabolism , Cyclooxygenase 2/metabolism , Humans , Hydrazines , Inflammation/metabolism , Interleukin-1/metabolism , Molecular Docking Simulation , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress , Signal Transduction , Sulindac , Tumor Necrosis Factor-alpha/metabolism
20.
Sci Rep ; 12(1): 8039, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35577881

ABSTRACT

Expression analysis of new protein targets may play a crucial role in the early detection and diagnosis of brain tumor progression. The study aimed to investigate the possible relation of KLF14, TPD52, miR-124, and PKCε in the development and progression of brain cancer and space occupying lesion (SOL) of the brain. One hundred human blood samples comprising varying diagnostic groups (SOL brain, grade I, II, III, IV) were analyzed by real-time quantitative PCR to determine the expression level of KLF14, TPD52, miR-124, and PKCε. TPD52 and PKCε were upregulated in brain cancer by 2.5- and 1.6-fold, respectively, whereas, KLF14 and miR-124 were downregulated in brain cancer. In metastatic and high-grade brain cancer, TPD52 and PKCε expression were up-regulated and KLF14 and miR-124 expression were down-regulated. Further, these genes were found to be differentially expressed in the blood of patients with SOL. Upregulation of TPD52 and PKCε, however, reduced expression of KLF14 and miR-124 in SOL of the brain as compared to healthy controls. Expression analysis of TPD52, KLF14, miR-124, and PKCε provided useful information on the differences existing between the normal brain and SOL, in addition to gliomas; thus, might prove to be useful having diagnostic or prognostic value.


Subject(s)
Brain Neoplasms , MicroRNAs , Brain/metabolism , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Cell Proliferation/genetics , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Proteins/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...