Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9230, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649688

ABSTRACT

With its high rate of consanguineous marriages and diverse ethnic population, little is currently understood about the genetic architecture of autism spectrum disorder (ASD) in Pakistan. Pakistan has a highly ethnically diverse population, yet with a high proportion of endogamous marriages, and is therefore anticipated to be enriched for biallelic disease-relate variants. Here, we attempt to determine the underlying genetic abnormalities causing ASD in thirty-six small simplex or multiplex families from Pakistan. Microarray genotyping followed by homozygosity mapping, copy number variation analysis, and whole exome sequencing were used to identify candidate. Given the high levels of consanguineous marriages among these families, autosomal recessively inherited variants were prioritized, however de novo/dominant and X-linked variants were also identified. The selected variants were validated using Sanger sequencing. Here we report the identification of sixteen rare or novel coding variants in fifteen genes (ARAP1, CDKL5, CSMD2, EFCAB12, EIF3H, GML, NEDD4, PDZD4, POLR3G, SLC35A2, TMEM214, TMEM232, TRANK1, TTC19, and ZNF292) in affected members in eight of the families, including ten homozygous variants in four families (nine missense, one loss of function). Three heterozygous de novo mutations were also identified (in ARAP1, CSMD2, and NEDD4), and variants in known X-linked neurodevelopmental disorder genes CDKL5 and SLC35A2. The current study offers information on the genetic variability associated with ASD in Pakistan, and demonstrates a marked enrichment for biallelic variants over that reported in outbreeding populations. This information will be useful for improving approaches for studying ASD in populations where endogamy is commonly practiced.


Subject(s)
Autism Spectrum Disorder , Exome Sequencing , Pedigree , Humans , Autism Spectrum Disorder/genetics , Pakistan , Male , Female , DNA Copy Number Variations/genetics , Genetic Predisposition to Disease , Child , Alleles , Consanguinity , Child, Preschool , Mutation , Homozygote
2.
Genes (Basel) ; 14(2)2023 01 29.
Article in English | MEDLINE | ID: mdl-36833273

ABSTRACT

Congenital idiopathic nystagmus (CIN) is an oculomotor disorder characterized by repetitive and rapid involuntary movement of the eye that usually develops in the first six months after birth. Unlike other forms of nystagmus, CIN is widely associated with mutations in the FRMD7 gene. This study involves the molecular genetic analysis of a consanguineous Pakistani family with individuals suffering from CIN to undermine any potential pathogenic mutations. Blood samples were taken from affected and normal individuals of the family. Genomic DNA was extracted using an in-organic method. Whole Exome Sequencing (WES) and analysis were performed to find any mutations in the causative gene. To validate the existence and co-segregation of the FRMD7 gene variant found using WES, sanger sequencing was also carried out using primers that targeted all of the FRMD7 coding exons. Additionally, the pathogenicity of the identified variant was assessed using different bioinformatic tools. The WES results identified a novel nonsense mutation in the FRMD7 (c.443T>A; p. Leu148 *) gene in affected individuals from the Pakistani family, with CIN resulting in a premature termination codon, further resulting in the formation of a destabilized protein structure that was incomplete. Co-segregation analysis revealed that affected males are hemizygous for the mutated allele c.443T>A; p. Leu148 * and the affected mother is heterozygous. Overall, such molecular genetic studies expand our current knowledge of the mutations associated with the FRMD7 gene in Pakistani families with CIN and significantly enhance our understanding of the molecular mechanisms involved in genetic disorders.


Subject(s)
Genetic Diseases, X-Linked , Nystagmus, Congenital , Male , Humans , Pakistan , Membrane Proteins/genetics , Genetic Diseases, X-Linked/genetics , DNA Mutational Analysis , Cytoskeletal Proteins/genetics , Nystagmus, Congenital/genetics
3.
Anal Methods ; 13(42): 5035-5047, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34647115

ABSTRACT

DNA sequencing is among the most important techniques in biology to decipher the key genetic players of health and disease. The existing laboratory instruments for DNA sequencing are well established and reliable. However, these instruments are still out of reach of most laboratories in the world due to very high equipment and running costs and require trained personnel to keep them running. These instruments are also large and bulky making them unsuitable for analysis in remote settings away from laboratories. Here we describe a proof-of-concept of a DNA sequencing device LoopSeeq using a simple approach to address the said problems without minimizing the quality of results. The device was designed to perform pyrosequencing by iterative addition of dNTPs by contact dispensing through a loop pipette (loopette) and detection of chemiluminiscence with the cheapest sensor in the market, a light dependent resistor (LDR). Two small geared motors drive the moving parts in a controlled and coordinated manner with the help of a motor driver circuit, an Arduino Nano microcontroller and two small neodymium magnets. The real-time light intensity data from the LDR were transferred to a laptop computer for further analysis. Pyrosequencing was optimized using 55 nt self-primed oligo. In order to demonstrate the DNA sequencing ability with real samples, molecular genetic analysis was performed for a previously identified novel mutation from our lab in exon4 of the OCA2 gene. LoopSeeq successfully identified the homozygous normal (c.408-409_AA), homozygous mutant (c.408-409_delAA) and heterozygous carrier (c.408-409_AA/delAA) alleles in three individuals of a family affected with oculocutaneous albinism (OCA). Further, this can be implemented for molecular diagnostic applications for bacterial, viral or other pathogen detection and genotyping among different subtypes following some reports described earlier. A few drawbacks in the current implementation including the evaporation of liquid reagents, possible loopette contamination, etc. associated with use for longer times are also described along with suggestions to rectify these problems in future designs. With the described capabilities, the LoopSeeq device can be implemented in routine labs as well as in several real-world situations where conventional DNA sequencing instruments are unfeasible, for example, diagnostic testing at remote settings or at the point-of-care.


Subject(s)
Albinism, Oculocutaneous , Membrane Transport Proteins , Albinism, Oculocutaneous/diagnosis , Albinism, Oculocutaneous/genetics , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Membrane Transport Proteins/genetics , Mutation
4.
Animals (Basel) ; 11(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34438882

ABSTRACT

Livestock is an important commodity playing a major role in the global economy. Red meat plays an important role in human life, as it is a good source of animal protein and energy. The fatty acid content of beef has been shown to impact the eating experience and nutritional value of beef. Therefore, this study aimed to identify genomic regions which can account for genetic variation in meat fatty acid content. Genotypes imputed to the Illumina BovineHD 770K BeadChip were used in this study. Thirty-six 1-Mb genomic regions with a posterior probability of inclusion (PPI) greater than 0.90 were identified to be associated with variation in the content of at least one fatty acid. The genomic regions (1Mb) which were associated with more than one fatty acid trait with high genetic variance and harbored good candidate genes were on Chromosome (Chr) 6 (fatty acid binding protein 2), Chr 19 (thyroid hormone receptor alpha, fatty acid synthase), Chr 26 (stearoyl-CoA desaturase), and Chr 29 (thyroid hormone responsive, fatty acid desaturase 2, and fatty acid desaturase 3). Further studies are required to identify the causal variants within the identified genomic regions. Findings from the present study will help to increase understanding of the variation in fatty acid content of beef and help to enhance selection for beef with improved fatty acid composition.

5.
J Pak Med Assoc ; 69(2): 183-189, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30804581

ABSTRACT

OBJECTIVE: To identify the underlying genetic anomalies in two consanguineous Pakistani families with autosomal recessive achromatopsia. METHODS: The exploratory study was conducted under the patronage of International Islamic University, Islamabad, Pakistan, and Sungshin Women University, Seoul, South Korea, after two families coded PKCN-02 and PKCN-07 belonging to different ethnic groups were recruited from different areas of Khyber Pakhtunkhawa province of Pakistan in July 2016. The families were originally diagnosed with nystagmus upon medical examination. Exome sequencing was performed to identify the possible causative gene which was found to be cyclic nucleotide-gated channel alpha-3. Sanger sequencing was performed to confirm the mutations. After genetic analysis, clinical analysis was re-evaluated for colour vision using Ishihara 26 plates. Pathogenic potential of these mutations was evaluated using algorithmic mutation prediction tools. In-silico analysis was performed to predict effect of these mutations on protein structure of the gene in question. RESULTS: Exome sequencing revealed a reported missense mutation c .1306C>T (p.R436W) in family PKCN-02 and a novel missense mutation c.1540G>A (p.D514N) in family PKCN-07. After mutational analysis, clinical re-evaluation revealed that both families were segregating autosomal recessive achromatopsia. Further, the topological model of the cyclic nucleotide-gated channel alpha-3 polypeptide describes these missense mutations primarily affecting the C-linker and cyclic guanosine monophosphate-binding sites, respectively. Protein structure modelling of cyclic nucleotide-gated channel alpha-3 protein revealed abnormal structure produced by p.R436W and p.D514N.. CONCLUSIONS: Exome sequencing approach was used to first identify the genetic alteration in families with nystagmus. Two mutations in cyclic nucleotide-gated channel alpha-3gene were uncovered, including one novel mutation. Clinical re-evaluation uncovered that both families had achromatopsia.


Subject(s)
Color Vision Defects , Cyclic Nucleotide-Gated Cation Channels/genetics , Nystagmus, Pathologic , Adult , Biological Transport, Active/genetics , Color Perception Tests/methods , Color Vision Defects/diagnosis , Color Vision Defects/ethnology , Color Vision Defects/genetics , Female , Genetic Association Studies , Humans , Male , Mutation, Missense , Nystagmus, Pathologic/diagnosis , Nystagmus, Pathologic/etiology , Pakistan , Pedigree , Polymorphism, Genetic , Visual Acuity , Exome Sequencing
6.
J Coll Physicians Surg Pak ; 27(5): 308-310, 2017 May.
Article in English | MEDLINE | ID: mdl-28599695

ABSTRACT

Junctional epidermolysis bullosa (JEB) is a recessively inherited skin blistering disease and is caused due to abnormalities in proteins that hold layers of the skin. Herlitz JEB is the severe form and non-Herlitz JEB is the milder form. This report describes a case of congenitally affected male child aged 5 years, with skin blistering. He has mitten-like hands and soft skin blistering on hands, legs and knees. Symptoms almost disappeared at the age of 3 years but reappeared with increased severity after 6 months. Histopathological examination showed epidermal detachment with intact basal cell layer and sparse infiltrate of lymphocytes with few eosinophils in the dermis. There was no blistering on the moist lining of the mouth and digestive tract. Localized symptoms with less lethality and histopathological examination indicated the presence of non-Herlitz type of JEB. This is the first report which confirms the presence of non-Herlitz junctional epidermolysis bullosa in Pakistan.


Subject(s)
Blister/pathology , Epidermolysis Bullosa, Junctional/pathology , Skin/pathology , Blister/etiology , Child , Child, Preschool , Consanguinity , Epidermolysis Bullosa, Junctional/genetics , Humans , Male
8.
Mol Cell Biochem ; 382(1-2): 225-35, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23817773

ABSTRACT

Proton particles comprise the most abundant ionizing radiation (IR) in outer space. These high energy particles are known to cause frequent double- and single-stranded DNA lesions that can lead to cancer and tumor formation. Understanding the mechanism of cellular response to proton-derived IR is vital for determining health risks to astronauts during space missions. Our understanding of the consequences of these high energy charged particles on microRNA (miRNA) regulation is still in infancy. miRNAs are non-coding, single-stranded RNAs of ~22 nucleotides that constitute a novel class of gene regulators. They regulate diverse biological processes, and each miRNA can control hundreds of gene targets. To investigate the effect of proton radiation on these master regulators, we examined the miRNA expression in selected mice organs that had been exposed to whole-body proton irradiation (2 Gy), and compared this to control mice (0 Gy exposure). RNA was isolated from three tissues (testis, brain, and liver) from treated and control mice and subjected to high-throughput small RNA sequencing. Bioinformatics analysis of small RNA sequencing data revealed dysregulation of (p < 0.05; 20 up- and 10 down-regulated) 14 mouse testis, 8 liver, and 8 brain miRNAs. The statistically significant and unique miRNA expression pattern found among three different proton-treated mouse tissues indicates a tissue-specific response to proton radiation. In addition to known miRNAs, sequencing revealed differential expression of 11 miRNAs in proton-irradiated mice that have not been previously reported in association with radiation exposure and cancer. The dysregulation of miRNAs on exposure to proton radiation suggest a possible mechanism of proton particles involvement in the onset of cell tumorgenesis. In summary, we have established that specific miRNAs are vulnerable to proton radiation, that such differential expression profile may depend upon the tissue, and that there are more miRNAs affected by proton radiation than have been previously observed.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation/radiation effects , MicroRNAs/metabolism , Protons , Whole-Body Irradiation , Animals , Female , Male , Mice , MicroRNAs/genetics , Organ Specificity/genetics , Organ Specificity/radiation effects , RNA Editing/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...