Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Inflammopharmacology ; 32(1): 643-656, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37864684

ABSTRACT

The current study was designed to evaluate the 2-hydroxybenzohydrazide (HBH) as a drug having efficacy against pyrexia, inflammation, and nociception. Besides, the therapeutic effects of HBH on oxidative stress and C-reactive proteins were also evaluated. The pharmacological studies on HBH (20-60 mg/kg) were conducted using nociception, inflammation, and pyrexia standard models. Naloxone antagonism was performed to assess the possible involvement of opioidergic mechanisms. The antioxidant study was conducted on ABTS and DPPH assays using gallic acid as a standard. Moreover, the binding capability of HBH with enzymes cyclooxygenase-I/II (COX-I/II) was determined using molecular modeling analysis. The findings indicated that the HBH dose-dependently inhibited pain, inflammation, and pyrexia. The HBH has significant anti-nociceptive and anti-inflammatory activities at 60 mg/kg (***p < 0.001), similar to the lower doses of diclofenac sodium (50 mg/kg) and tramadol (30 mg/kg). The HBH at 60 mg/kg reduced pyrexia as paracetamol (150 mg/kg). The HBH at 20-60 mg/kg doses declined the plasma C-reactive protein concentration. The mechanistic studies showed that the anti-nociceptive effect of HBH was antagonized by naloxone, indicating that the opioidergic mechanisms are involved. Furthermore, computational studies showed that the HBH exhibited an affinity for COX-I/II target receptors. The HBH significantly inhibited ABTS and DPPH radicals (IC50 = 33.81 and 26.74 µg/ml). These results proposed that the HBH has significant antipyretic, anti-inflammatory, and anti-nociceptive activities involving opioidergic mechanism.


Subject(s)
Analgesics , Benzothiazoles , Hydrazines , Plant Extracts , Sulfonic Acids , Humans , Analgesics/pharmacology , Analgesics/therapeutic use , Plant Extracts/pharmacology , Nociception , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Fever/drug therapy , Inflammation/drug therapy , Naloxone/pharmacology , Naloxone/therapeutic use , Cyclooxygenase 2
2.
Egypt J Intern Med ; 34(1): 5, 2022.
Article in English | MEDLINE | ID: mdl-35043040

ABSTRACT

The deadly SARS-CoV-2 virus has infected more than 259,502,031 confirmed cases with 5,183,003 deaths in 223 countries during the last 22 months (Dec 2019-Nov 2021), whereas approximately 7,702,859,718, vaccine doses have been administered (WHO: https://covid19.who.int/) as of the 24th of Nov 2021. Recent announcements of test trial completion of several new vaccines resulted in the launching of immunization for the common person around the globe highlighting a ray of hope to cope with this infection. Meanwhile, genetic variations in SARS-CoV-2 and third layer of infection spread in numerous countries emerged as a stronger prototype than the parental. New and parental SARS-CoV-2 strains appeared as a risk factor for other pre-existing diseases like cancer, diabetes, neurological disorders, kidney, liver, heart, and eye injury. This situation requires more attention and re-structuring of the currently developed vaccines and/or drugs against SARS-CoV-2 infection. Although a decline in COVID-19 infection has been reported globally, an increase in COVID-19 cases in the subcontinent and east Mediterranean area could be alarming. In this review, we have summarized the current information about the SARS-CoV-2 biology, its interaction and possible infection pathways within the host, epidemiology, risk factors, economic collapse, and possible vaccine and drug development.

3.
Biochem Biophys Res Commun ; 528(3): 466-472, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32499112

ABSTRACT

Tau protein regulates, maintains and stabilizes microtubule assembly under normal physiological conditions. In certain pathological circumstances, tau is post-translationally modified predominantly via phosphorylation and glycosylation. Hyper-phosphorylation of tau in Alzheimer's disease (AD) resulted in aggregated neurofibrillary tangles (NFTs) formation. Unfortunately, absence of tau 3D structure makes difficult to understand exact mechanism involved in tau pathology. Here by using ab-initio modelling, we predicted a tau 3D structure that not only explains its binding with microtubules but also elucidates NFTs formation. O-linked ß-N-acetylglucosaminylation (O-ß-GlcNAc) is thought to regulate tau phosphorylation on single or proximal Ser/Thr residues (called as Yin-Yang sites). In this study, we not only validate the previously described three-serine residues (208, 238 and 400) as Yin-Yang sites but also predicted 22 more possible Ser/Thr O-glycosylation sites. Among them seventeen residues were predicted as possible Yin-Yang sites and are proposed to mediate NFT formation in AD. These predicted Yin-Yang sites may act as attractive therapeutic targets for the drug development in AD. Predicted 3D structure of tau441 was highly accessible for phosphorylation and hyperphosphorylation, and showed higher surface accessibility for interplay between O-ß-GlcNAc and phosphorylation modifications. Kinases and phosphatases involved in tau phosphorylation are conserved in human and other organisms. Homology modelling revealed conserved catalytic domain for both human and C. elegans O-GlcNAc transferase (OGT), suggesting that transgenic C. elegans expressing human tau may be a suitable model system to study these modifications.


Subject(s)
Alzheimer Disease/metabolism , tau Proteins/chemistry , tau Proteins/metabolism , Acetylglucosamine/metabolism , Amino Acid Sequence , Animals , Animals, Genetically Modified , Binding Sites , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Glycosylation , Humans , Models, Animal , Models, Molecular , Neurofibrillary Tangles/metabolism , Phosphorylation , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Structural Homology, Protein , tau Proteins/genetics
4.
Int J Mol Sci ; 20(18)2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31491838

ABSTRACT

Aberrantly high levels of tyrosine-phosphorylated signal transducer and activator of transcription 3 (p-STAT3) are found constitutively in ~50% of human lung and breast cancers, acting as an oncogenic transcription factor. We previously demonstrated that Manuka honey (MH) inhibits p-STAT3 in breast cancer cells, but the exact mechanism remained unknown. Herein, we show that MH-mediated inhibition of p-STAT3 in breast (MDA-MB-231) and lung (A549) cancer cell lines is accompanied by decreased levels of gp130 and p-JAK2, two upstream components of the IL-6 receptor (IL-6R) signaling pathway. Using an ELISA-based assay, we demonstrate that MH binds directly to IL-6Rα, significantly inhibiting (~60%) its binding to the IL-6 ligand. Importantly, no evidence of MH binding to two other cytokine receptors, IL-11Rα and IL-8R, was found. Moreover, MH did not alter the levels of tyrosine-phosphorylated or total Src family kinases, which are also constitutively activated in cancer cells, suggesting that signaling via other growth factor receptors is unaffected by MH. Binding of five major MH flavonoids (luteolin, quercetin, galangin, pinocembrin, and chrysin) was also tested, and all but pinocembrin could demonstrably bind IL-6Rα, partially (30-35%) blocking IL-6 binding at the highest concentration (50 µM) used. In agreement, each flavonoid inhibited p-STAT3 in a dose-dependent manner, with estimated IC50 values in the 3.5-70 µM range. Finally, docking analysis confirmed the capacity of each flavonoid to bind in an energetically favorable configuration to IL-6Rα at a site predicted to interfere with ligand binding. Taken together, our findings identify IL-6Rα as a direct target of MH and its flavonoids, highlighting IL-6R blockade as a mechanism for the anti-tumor activity of MH, as well as a viable therapeutic target in IL-6-dependent cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Honey , Receptors, Interleukin-6/antagonists & inhibitors , STAT3 Transcription Factor/antagonists & inhibitors , Antineoplastic Agents/chemistry , Autocrine Communication/drug effects , Biological Products/chemistry , Cell Line, Tumor , Humans , Janus Kinase 2/metabolism , Phosphorylation/drug effects , Protein Binding , STAT3 Transcription Factor/metabolism , Tumor Cells, Cultured
5.
Genes Dis ; 6(3): 304-317, 2019 Sep.
Article in English | MEDLINE | ID: mdl-32042870

ABSTRACT

Chronic Hepatitis C Viral (HCV) infection is a leading health problem worldwide and resulted in fibrotic scar formation, and finally liver-cirrhosis. Although contemporary therapies can partially reverse this destructive process, the rehabilitation is too slow and unsuitable for all chronic infections. The current study elucidates the mechanism of disease progression from early (F1) to moderate (F2, F3), and to severe fibrosis (F4)/cirrhosis in HCV genotype 3a infected patients to find out new candidates as potential disease progression markers and antiviral therapeutic agents. A total of 550 genes were found differentially regulated in the four fibrosis stages and grouped in 22 classes according to their biological functions. Gene set enrichment (GSEA) and Ingenuity pathway analysis (IPA) were used to identify the regulation of crucial biological functions and pathways involved in HCV progression. HCV differentially regulated the expression of genes involved in apoptosis, cell structure, signal transduction, proliferation, metabolism, cytokine signaling, immune response, cell adhesion and maintenance, and post translational modifications by pathway analysis. There was an increasing trend of proliferative and cell growth related genes and shutting down of immune response as the disease progress mild to moderate to advanced stage cirrhosis. The myriad of changes in gene expression showed more chances of developing liver cancer in patients infected with HCV genotype 3a in a systematic manner. The identified gene set can act as disease markers for prediction, whether the fibrosis lead to cirrhosis and its association with end stage liver disease development.

6.
J Biomed Sci ; 24(1): 76, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28927401

ABSTRACT

Reactive oxidative species (ROS) toxicity remains an undisputed cause and link between Alzheimer's disease (AD) and Type-2 Diabetes Mellitus (T2DM). Patients with both AD and T2DM have damaged, oxidized DNA, RNA, protein and lipid products that can be used as possible disease progression markers. Although the oxidative stress has been anticipated as a main cause in promoting both AD and T2DM, multiple pathways could be involved in ROS production. The focus of this review is to summarize the mechanisms involved in ROS production and their possible association with AD and T2DM pathogenesis and progression. We have also highlighted the role of current treatments that can be linked with reduced oxidative stress and damage in AD and T2DM.


Subject(s)
Alzheimer Disease/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Oxidative Stress , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/prevention & control , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/prevention & control , Humans
7.
J Membr Biol ; 247(4): 345-55, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24573306

ABSTRACT

Brevibacterium linens (B. linens) DSM 20158 with an unsequenced genome can be used as a non-pathogenic model to study features it has in common with other unsequenced pathogens of the same genus on the basis of comparative proteome analysis. The most efficient way to kill a pathogen is to target its energy transduction mechanism. In the present study, we have identified the redox protein complexes involved in the electron transport chain of B. linens DSM 20158 from their clear homology with the shot-gun genome sequenced strain BL2 of B. linens by using the SDS-Polyacrylamide gel electrophoresis coupled with nano LC-MS/MS mass spectrometry. B. linens is found to have a branched electron transport chain (Respiratory chain), in which electrons can enter the respiratory chain either at NADH (Complex I) or at Complex II level or at the cytochrome level. Moreover, we are able to isolate, purify, and characterize the membrane bound Complex II (succinate dehydrogenase), Complex III (menaquinone cytochrome c reductase cytochrome c subunit, Complex IV (cytochrome c oxidase), and Complex V (ATP synthase) of B. linens strain DSM 20158.


Subject(s)
Bacterial Proteins/chemistry , Brevibacterium/chemistry , Electron Transport Chain Complex Proteins/chemistry , ATP Synthetase Complexes/chemistry , ATP Synthetase Complexes/isolation & purification , Adenosine Diphosphate/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Brevibacterium/genetics , Cytochromes c/chemistry , Cytochromes c/isolation & purification , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/isolation & purification , Energy Transfer , Genome, Bacterial , Kinetics , Oxidation-Reduction , Phosphates/chemistry , Vitamin K 2/chemistry , Vitamin K 2/isolation & purification
8.
Adv Bioinformatics ; 2014: 324753, 2014.
Article in English | MEDLINE | ID: mdl-25580119

ABSTRACT

Impaired insulin signaling has been thought of as important step in both Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Posttranslational modifications (PTMs) regulate functions and interaction of insulin with insulin receptors substrates (IRSs) and activate insulin signaling downstream pathways via autophosphorylation on several tyrosine (TYR) residues on IRSs. Two important insulin receptor substrates 1 and 2 are widely expressed in human, and alternative phosphorylation on their serine (Ser) and threonine (Thr) residues has been known to block the Tyr phosphorylation of IRSs, thus inhibiting insulin signaling and promoting insulin resistance. Like phosphorylation, O-glycosylation modification is important PTM and inhibits phosphorylation on same or neighboring Ser/Thr residues, often called Yin Yang sites. Both IRS-1 and IRS-2 have been shown to be O-glycosylated; however exact sites are not determined yet. In this study, by using neuronal network based prediction methods, we found more than 50 Ser/Thr residues that have potential to be O-glycosylated and may act as possible sites as well. Moreover, alternative phosphorylation and O-glycosylation on IRS-1 Ser-312, 984, 1037, and 1101 may act as possible therapeutic targets to minimize the risk of AD and T2DM.

9.
J Proteomics ; 83: 99-118, 2013 May 27.
Article in English | MEDLINE | ID: mdl-23507220

ABSTRACT

Brevibacterium linens DSM 20158 is an industrially important actinobacterium which is well-known for the production of amino acids and enzymes. However, as this strain has an unsequenced genome, there is no detailed information regarding its proteome although another strain of this microbe, BL2, has a shotgun genome sequence. However, this still does not cover the entire scope of its proteome. The present study is carried out by first identifying proteins by homology matches using the Mascot search algorithm followed by an advanced approach using de novo sequencing and MS BLAST to expand the B. linens proteome. The proteins identified in the secretome and cellular portion appear to be involved in various metabolic and physiological processes of this unsequenced organism. This study will help to enhance the usability of this strain of B. linens in different areas of research in the future rather than mainly in the food industries. BIOLOGICAL SIGNIFICANCE: The present study describes the construction of the first detailed proteomic reference map of B. linens DSM 20158 with unsequenced genome by comparative proteome research analysis. This opens new horizons in proteomics to understand the role of proteins involved in the metabolism and physiology of other organisms with unsequenced genomes.


Subject(s)
Bacterial Proteins , Brevibacterium , Genome, Bacterial/physiology , Proteome , Proteomics/methods , Sequence Analysis, Protein/methods , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Brevibacterium/genetics , Brevibacterium/metabolism , Mass Spectrometry , Proteome/genetics , Proteome/metabolism , Sequence Alignment/methods
10.
Braz. j. microbiol ; 43(3): 1051-1061, July-Sept. 2012. graf, tab
Article in English | LILACS | ID: lil-656674

ABSTRACT

Various cultivation parameters were optimized for the production of extra cellular protease by Brevibacterium linens DSM 20158 grown in solid state fermentation conditions using statistical approach. The cultivation variables were screened by the Plackett-Burman design and four significant variables (soybean meal, wheat bran, (NH4)2SO4 and inoculum size were further optimized via central composite design (CCD) using a response surface methodological approach. Using the optimal factors (soybean meal 12.0g, wheat bran 8.50g, (NH4)2SO4) 0.45g and inoculum size 3.50%), the rate of protease production was found to be twofold higher in the optimized medium as compared to the unoptimized reference medium.


Subject(s)
Brevibacterium/enzymology , Brevibacterium/isolation & purification , Fermentation , Glycine max/enzymology , Peptide Hydrolases/analysis , Soil Conditions , Triticum/enzymology , Enzyme Activation , Flour , Methods , Reference Standards , Data Interpretation, Statistical
11.
J Membr Biol ; 245(2): 89-95, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22359064

ABSTRACT

Nocardia asteroides is a pathogenic bacterium that causes severe pulmonary infections and plays a vital role in HIV development. Its electron transport chain containing cytochromes as electron carriers is still undiscovered. Information regarding cytochromes is important during drug synthesis based on cytochrome inhibitions. In this study we explored the electron transport of N. asteroides. Spectroscopic analysis of cytoplasm and membranes isolated from N. asteroides indicates the presence of soluble cytochrome-c, complex-II and the modified a(1)c(1) complex as the terminal oxidase. The molecular weight of the respiratory complex-II isolated and purified from the given bacterium was 103 kDa and was composed of three subunits, of 14, 26 and 63 kDa. Complex-II showed symmetrical α-absorption peaks at 561 nm in the reduced state. Spectral analysis revealed the presence of only one heme b molecule (14-kDa subunit) in complex-II, which was confirmed by heme staining. Heme b content was found to be 9.5 nmol/mg in complex-II. The electron transport chain of N. asteroides showed the presence of soluble cytochrome-c, cytochrome-a(1)c(1) and cytochrome-b.


Subject(s)
Electron Transport Complex II/isolation & purification , Electron Transport Complex II/metabolism , Nocardia asteroides/enzymology , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Cytochromes/metabolism , Cytoplasm/enzymology , Cytoplasm/metabolism , Electron Transport , Heme/metabolism , Membrane Proteins/metabolism , Molecular Weight , Multienzyme Complexes/isolation & purification , Multienzyme Complexes/metabolism , Nocardia asteroides/metabolism , Oxidoreductases/metabolism , Spectrum Analysis/methods
12.
Braz J Microbiol ; 43(3): 1051-61, 2012 Jul.
Article in English | MEDLINE | ID: mdl-24031928

ABSTRACT

Various cultivation parameters were optimized for the production of extra cellular protease by Brevibacterium linens DSM 20158 grown in solid state fermentation conditions using statistical approach. The cultivation variables were screened by the Plackett-Burman design and four significant variables (soybean meal, wheat bran, (NH4)2SO4 and inoculum size were further optimized via central composite design (CCD) using a response surface methodological approach. Using the optimal factors (soybean meal 12.0g, wheat bran 8.50g, (NH4)2SO4) 0.45g and inoculum size 3.50%), the rate of protease production was found to be twofold higher in the optimized medium as compared to the unoptimized reference medium.

13.
Cell Div ; 6: 15, 2011 Jul 12.
Article in English | MEDLINE | ID: mdl-21749719

ABSTRACT

Eukaryotic chromatin is a combination of DNA and histone proteins. It is established fact that epigenetic mechanisms are associated with DNA and histones. Initial studies emphasize on core histones association with DNA, however later studies prove the importance of linker histone H1 epigenetic. There are many types of linker histone H1 found in mammals. These subtypes are cell specific and their amount in different types of cells varies as the cell functions. Many types of post-translational modifications which occur on different residues in each subtype of linker histone H1 induce conformational changes and allow the different subtypes of linker histone H1 to interact with chromatin at different stages during cell cycle which results in the regulation of transcription and gene expression. Proposed O-glycosylation of linker histone H1 promotes condensation of chromatin while phosphorylation of linker histone H1 is known to activate transcription and gene regulation by decondensation of chromatin. Interplay between phosphorylation and O-ß-GlcNAc modification on Ser and Thr residues in each subtype of linker histone H1 in Homo sapiens during cell cycle may result in diverse functional regulation of proteins. This in silico study describes the potential phosphorylation, o-glycosylation and their possible interplay sites on conserved Ser/Thr residues in various subtypes of linker histone H1 in Homo sapiens.

14.
Virol J ; 8: 208, 2011 May 08.
Article in English | MEDLINE | ID: mdl-21548981

ABSTRACT

Hepatocellular carcinoma is mainly associated with viral hepatitis B and C. Activation of cell growth stimulator IGF-II gene is observed in tumor formation especially in viral associated hepatocellular carcinoma. Elevated IGF-II levels are indicator of increased risk for cholangiocellular and hepatocellular carcinomas through over saturation of IGF-II binding capacities with IGF receptors leading to cellular dedifferentiation. In HCV, core protein is believed to trans-activate host IGF-II receptor through PKC pathway and the inhibition of tumor cell growth can be achieved by blocking IGF-II pathway either at transcriptional level or increasing its binding with IGFBPs (Insulin like growth factor proteins) at C-terminal, so that it is not available in free form. IGFBP-6 is a specific inhibitor of IGF-II actions. Affinity of IGFBPs with IGFs is controlled by post-translational modifications. Phosphorylation of IGFBPs inhibits IGFs action on target cells while O-glycosylation prevents binding of IGFBP-6 to glycosaminoglycans and cell membranes and resulting in a 10-fold higher affinity for IGF-II. O-glycosylation and phosphorylation operate the functional expression of cellular proteins, this switching on and off the protein expression is difficult to monitor in vivo. By using neural network based prediction methods, we propose that alternate O-ß-GlcNAc modification and phosphorylation on Ser 204 control the binding of IGFBP-6 with IGF-II. This information may be used for developing new therapies by regulating IGFBP-6 assembly with IGF-II to minimize the risk of viral associated hepatocellular carcinoma. We can conclude that during HCV/HBV infection, O-ß-GlcNAc of IGFBP-6 at Ser 204 diminish their binding with IGF-II, increase IGF-II cellular expression and promote cancer progression which can lead to hepatocellular carcinoma. Furthermore, this site can be used for developing new therapies to control the IGF-II actions during viral infection to minimize the risk of hepatocellular carcinoma.


Subject(s)
Acetylglucosamine/metabolism , Carcinoma, Hepatocellular/virology , Hepatitis B/complications , Hepatitis C/complications , Insulin-Like Growth Factor Binding Protein 6/metabolism , Insulin-Like Growth Factor II/metabolism , Serine/metabolism , Amino Acid Sequence , Glycosylation , Hepacivirus/pathogenicity , Hepatitis B/virology , Hepatitis B virus/pathogenicity , Hepatitis C/virology , Humans , Molecular Sequence Data , Phosphorylation , Protein Binding , Sequence Alignment
15.
Virol J ; 8: 229, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21569618

ABSTRACT

HCV is a leading cause of hepatocellular carcinoma and cirrhosis all over the world. Claudins belong to family of tight junction's proteins that are responsible for establishing barriers for controlling the flow of molecules around cells. For therapeutic strategies, regulation of viral entry into the host cells holds a lot of promise. During HCV infection claudin-1 is highly expressed in liver and believed to be associated with HCV virus entry after HCV binding with or without co-receptor CD81. The claudin-1 assembly with tight junctions is regulated by post translational modifications. During claudins assembly and disassembly with tight junctions, phosphorylation is required at C-terminal tail. In cellular proteins, interplay between phosphorylation and O-ß-GlcNAc modification is believed to be functional switch, but it is very difficult to monitor these functional and vibrant changes in vivo. Netphos 2.0 and Disphos 1.3 programs were used for potential phosphorylation; NetPhosK 1.0 and KinasePhos for kinase prediction; and YinOYang 1.2 and OGPET to predict possible O-glycosylation sites. We also identified Yin Yang sites that may have potential for O-ß-GlcNAc and phosphorylation interplay at same Ser/Thr residues. We for the first time proposed that alternate phosphorylation and O-ß-GlcNAc modification on Ser 192, Ser 205, Ser 206; and Thr 191 may provide an on/off switch to regulate assembly of claudin-1 at tight junctions. In addition these phosphorylation sites may be targeted by novel chemotherapeutic agents to prevent phosphorylation lead by HCV viral entry complex.


Subject(s)
Hepacivirus/physiology , Membrane Proteins/metabolism , Protein Processing, Post-Translational , Virus Internalization , Amino Acid Sequence , Claudin-1 , Computational Biology/methods , Glycosylation , Humans , Molecular Sequence Data , Phosphorylation , Sequence Alignment
16.
Braz. j. microbiol ; 41(3): 796-804, Oct. 2010. graf, tab, ilus
Article in English | LILACS | ID: lil-549427

ABSTRACT

A respiratory complex was isolated from plasma membrane of pathogenic Proteus mirabilis strain ATCC 29245. It was identified as complex II consisting of succinate:quinone oxidoreductase (EC 1.3.5.1) containing single heme b. The complex II was purified by ion-exchange chromatography and gel filtration. The molecular weight of purified complex was 116.5 kDa and it was composed of three subunits with molecular weights of 19 kDa, 29 kDa and 68.5 kDa. The complex II contained 9.5 nmoles of cytochrome b per mg protein. Heme staining indicated that the 19 kDa subunit was cytochrome b. Its reduced form showed absorptions peaks at 557.0, 524.8 and 424.4 nm. The á-band was shifted from 557.0 nm to 556.8 nm in pyridine ferrohemochrome spectrum. The succinate: quinone oxidoreductase activity was found to be high in this microorganism.


Subject(s)
Cell Membrane , Cytochromes b , Oxidoreductases , Proteus Infections , Proteus mirabilis/isolation & purification , Electrophoresis , Methods , Methods
17.
Braz J Microbiol ; 41(3): 796-804, 2010 Jul.
Article in English | MEDLINE | ID: mdl-24031557

ABSTRACT

A respiratory complex was isolated from plasma membrane of pathogenic Proteus mirabilis strain ATCC 29245. It was identified as complex II consisting of succinate:quinone oxidoreductase (EC 1.3.5.1) containing single heme b. The complex II was purified by ion-exchange chromatography and gel filtration. The molecular weight of purified complex was 116.5 kDa and it was composed of three subunits with molecular weights of 19 kDa, 29 kDa and 68.5 kDa. The complex II contained 9.5 nmoles of cytochrome b per mg protein. Heme staining indicated that the 19 kDa subunit was cytochrome b. Its reduced form showed absorptions peaks at 557.0, 524.8 and 424.4 nm. The α-band was shifted from 557.0 nm to 556.8 nm in pyridine ferrohemochrome spectrum. The succinate: quinone oxidoreductase activity was found to be high in this microorganism.

SELECTION OF CITATIONS
SEARCH DETAIL
...