Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Rep (Amst) ; 38: e00792, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36950261

ABSTRACT

Background: HIV-1-derived lentiviral vectors (LVs) are capable of transducing human cells by integrating the transgene into the host genome. In order to do that, LVs should have enough time and space to interact with the surface of the target cells. Herein, we used a microfluidic system to facilitate the transduction of BCP-ALL cells. Methods and Results: We used a SU-8 mold to fabricate a PDMS microfluidic chip containing three channels with a 50 µm height and a surface matching 96-well plates. In order to produce LVs, we used HEK293T cells to package the second generation of LVs. First, we evaluated the cell recovery from the microfluidic chip. Cell recovery assessment showcased that 3 h and 6 h of incubation in microfluidic channels containing 100,000 NALM-6 (BCP-ALL) cells with 2µL of culture media yielded 87±7.2% and 80.6 ± 10% of cell recovery, respectively. Afterward, the effects of LV-induced toxicity were evaluated using 10-30% LV concentrations in time frames ranging from 3 h to 24 h. In 96-well plates, it took 12-24 h for the viruses with 20% and 30% concentrations to affect the cell survival significantly. These effects were intensified in the microfluidic system implying that microfluidic is capable of enhancing LV transduction. Based on the evidence of cell recovery and cell survival we chose 6 h of incubation with 20% LV. Conclusion: The results from EGFP expression showcased that a microfluidic system could increase the LV transduction in BCP-ALL cells by almost 9-folds. All in all, the microfluidic system seems to be a great armamentarium in optimizing LV-based transduction.

2.
Mol Biol Rep ; 50(3): 2293-2304, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36575321

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) are utilized as a carrier of anti-tumor agents in targeted anti-cancer therapy. Despite the improvements in this area, there are still some unsolved issues in determining the appropriate dose, method of administration and biodistribution of MSCs. The current study aimed to determine the influence of toll-like receptor 3 (TLR3) stimulation on the potential of MSCs migration to the neoplasm environment in the mouse melanoma model. METHODS AND RESULTS: Adipose-derived MSCs (ADMSCs) were isolated from the GFP+ transgenic C57BL/6 mouse and treated with different doses (1 µg/ml and 10 µg/ml) of polyinosinic-polycytidylic acid, the related TLR3 agonist, at various time points (1 and 4 h). Following the treatment, the expression of targeted genes such as α4, α5, and ß1 integrins and TGF-ß and IL-10 anti-inflammatory cytokines was determined using real-time PCR. In vivo live imaging evaluated the migration index of the intraperitoneally (IP) injected treated ADMSCs in a lung tumor-bearing mouse (C57BL/6) melanoma model (n = 5). The presented findings demonstrated that TLR3 stimulation enhanced both migration of ADMSCs to the tumor area compared with control group (n = 5) and expression of α4, α5, and ß1 integrins. It was also detected that the engagement of TLR3 resulted in the anti-inflammatory behavior of the cells, which might influence the directed movement of ADMSCs. CONCLUSION: This research identified that TLR3 activation might improve the migration via the stimulation of stress response in the cells and depending on the agonist concentration and time exposure, this activated pathway drives the migratory behavior of MSCs.


Subject(s)
Melanoma , Mesenchymal Stem Cells , Mice , Animals , Toll-Like Receptor 3/metabolism , Tissue Distribution , Mice, Inbred C57BL , Mesenchymal Stem Cells/metabolism , Disease Models, Animal , Melanoma/metabolism , Integrins/metabolism
3.
Mol Biol Rep ; 49(3): 2025-2036, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35138523

ABSTRACT

BACKGROUND: Myeloid cell leukemia-1 (MCL-1) is a component of the Bcl-2 anti-apoptotic family that plays a key role in cell proliferation and differentiation. Despite tremendous improvements toward identification of the role of MCL-1 in leukemia progression, the functional significance and molecular mechanism behind the effect of MCL-1 overexpression on the proliferation of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) has not been clarified. In addition, less well appreciated is the effect of MCL-1 inhibition on the potentiation of doxorubicin-induced apoptosis in BCP-ALL cell lines. In the present study, we aimed to shed light on the anti-cancer properties of S63845, a potent Mcl-1 inhibitor, in BCP-ALL cell lines either alone or in combination with a chemotherapeutic drug. METHODS AND RESULTS: Mononuclear cells from patients with Pre-B ALL and BCP-ALL cell lines were treated with S63845 in presence or absence of doxorubicin, induction of apoptosis was evaluated using Annexin-V/PI staining kit. mRNA and protein expression levels were assessed by qRT-PCR and western blot analysis, respectively. Our results declared that inhibition of Mcl-1 impairs cell growth and induces apoptosis in pre-B ALL cells through activation of caspase-3 and up-regulation of a repertoire of pro-apoptotic Bcl-2 family. Additionally, S63845 acts synergically with doxorubicin to induce apoptosis in BCP-ALL cell lines. CONCLUSIONS: Our data declared that MCL-1 inhibition alone or in combination with a chemotherapeutic agent is considered an appealing strategy for the induction of apoptosis in BCP-ALL cells.


Subject(s)
Doxorubicin , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Apoptosis , Cell Line, Tumor , Doxorubicin/pharmacology , Humans , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
4.
J Cell Biochem ; 120(8): 14004-14016, 2019 08.
Article in English | MEDLINE | ID: mdl-30957273

ABSTRACT

Despite an old history behind the identification of the leading role of c-Myc in leukemogenesis, the road to constructing a therapeutic perspective for this molecule in acute lymphoblastic leukemia (ALL) is yet mesmerizing. This study was designed to provide a better outlook for the anticancer property of 10058-F4, an appealing inhibitor of c-Myc, in pre-B ALL cell lines either in the context of monotherapy or in combination with chemotherapeutic drugs. Our results declared that abrogation of c-Myc decreased the proliferative capacity of pre-B ALL-derived cells through halting the transition of the cells from G1 phase, and reducing the replicative potential of both REH and Nalm-6 cells, at least partly, through c-Myc-mediated suppression of human telomerase reverse transcriptase. Moreover, 10058-F4 potently induced a caspase-3-dependent apoptosis in pre-B ALL cells via shifting the balance between pro- and anti-apoptotic target genes. Although the inhibition of PI3Kδ using Idelalisib upregulated the messenger RNA expression of autophagy-related genes in 10058-F4-treated cells, treatment with autophagy inhibitor chloroquine decreased viability of the cells, either as a single agent or in combination with Idelalisib and/or 10058-F4; suggesting that the activation of autophagy in pre-B ALL cells could blunt apoptotic events and attenuate anticancer effect of both c-Myc and PI3K inhibitors. Finally, the results of our synergistic experiments delineated that 10058-F4 produced a synergistic effect with vincristine and provided an enhanced therapeutic efficacy in ALL cells, highlighting that c-Myc oncoprotein could be a bona fide target for the treatment of ALL.


Subject(s)
Apoptosis , Caspase 3/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins c-myc/metabolism , Thiazoles/therapeutic use , Vincristine/therapeutic use , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , G1 Phase/drug effects , Humans , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Purines/pharmacology , Quinazolinones/pharmacology , Telomerase/metabolism , Thiazoles/pharmacology
5.
Biomed Pharmacother ; 87: 274-279, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28063408

ABSTRACT

A majority of acute lymphoblastic leukemia patients overexpress CREB in the bone marrow. However, the functional significance of this up-regulation and the detailed molecular mechanism behind the regulatory effect of CREB on the growth of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells has not been elucidated. We demonstrated here that CREB knockdown induced apoptosis and impaired growth of BCP-ALL NALM-6 cells which was associated with caspase activation. The gene expression levels of prosurvival signals Bcl-2, Mcl-1, Bcl-xL, survivin and XIAP were down-regulated upon CREB suppression. These findings indicate a critical role for CREB in proliferation, survival, and apoptosis of BCP-ALL cells. The data also suggest that CREB could possibly serve as potential therapeutic target in BCP-ALL.


Subject(s)
Apoptosis/physiology , Cell Proliferation/physiology , Cyclic AMP Response Element-Binding Protein/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Cell Survival/physiology , Gene Knockdown Techniques , HEK293 Cells , Humans , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...