Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 113: 660-676, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32553917

ABSTRACT

In the field of biodegradable metallic materials, rapid and non-uniform biodegradation, caused by uncontrolled corrosion rates, is a potential shortcoming. Among the prominent biodegradable materials, magnesium is an attractive choice, however, it is prone to rapid dissolution. In contrast, iron possesses a slow dissolution rate. To approach the middle ground, instead of making magnesium more corrosion-resistant, the less-explored approach of making iron less corrosion-resistant is employed here. In this study, iron, and magnesium, having contrasting corrosion rates, are combined via magnetron co-sputtering. The idea of combinatorial synthesis is employed to fabricate two model nanostructured Fe-Mg samples, i.e. CSFM-1 (Fe85Mg15), and CSFM-2 (Fe65Mg35), exhibiting a controlled and uniform degradation in phosphate-buffer saline solution. The structural characterization of the two samples demonstrates a substitutional solid solution of bcc-Fe-Mg in CSFM-1 and an amorphous short-range-ordered structure in the CSFM-2 sample. Electrochemical investigation shows increased corrosion rates for the two Fe-Mg samples in comparison to pure Fe, validated by relatively active corrosion potentials, higher corrosion current densities, faster anodic dissolution, and lower charge transfer resistances, governed by chemical composition and non-equilibrium nanostructures. Finally, nano-indentation testing of the two samples reveals relatively higher hardness and lower elastic moduli, a suitable combination for bio-implants. STATEMENT OF SIGNIFICANCE: The use of Mg as a biodegradable in-vivo  implant material is problematic because of its high dissolution rate and potential for hydrogen gas generation. This is the first time that the idea of combinatorial synthesis is employed to fabricate two model nanostructured Fe-Mg systems, i.e. CSFM-1 (Fe85Mg15), and CSFM-2 (Fe65Mg35), exhibiting a controlled and uniform degradation. The structural characterization of the two systems demonstrates a substitutional solid solution of bcc-Fe-Mg in CSFM-1 and an amorphous short-range-ordered structure in the CSFM-2 system. Electrochemical investigation shows increased biodegradation rates for the two Fe-Mg systems in comparison to pure Fe, validated by relatively active corrosion potentials, higher corrosion current densities, faster anodic dissolution, and lower charge transfer resistances, governed by chemical composition and non-equilibrium nanostructures.


Subject(s)
Iron , Nanostructures , Alloys , Corrosion , Materials Testing , Solubility
2.
J Biomed Mater Res B Appl Biomater ; 107(6): 1970-1996, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30536973

ABSTRACT

Magnesium (Mg) has emerged as an ideal alternative to the permanent implant materials owing to its enhanced properties such as biodegradation, better mechanical strengths than polymeric biodegradable materials and biocompatibility. It has been under investigation as an implant material both in cardiovascular and orthopedic applications. The use of Mg as an implant material reduces the risk of long-term incompatible interaction of implant with tissues and eliminates the second surgical procedure to remove the implant, thus minimizes the complications. The hurdle in the extensive use of Mg implants is its fast degradation rate, which consequently reduces the mechanical strength to support the implant site. Alloy development, surface treatment, and design modification of implants are the routes that can lead to the improved corrosion resistance of Mg implants and extensive research is going on in all three directions. In this review, the recent trends in the alloying and surface treatment of Mg have been discussed in detail. Additionally, the recent progress in the use of computational models to analyze Mg bioimplants has been given special consideration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1970-1996, 2019.


Subject(s)
Absorbable Implants , Alloys , Magnesium , Animals , Humans , Materials Testing
3.
J Mech Behav Biomed Mater ; 85: 201-208, 2018 09.
Article in English | MEDLINE | ID: mdl-29908488

ABSTRACT

The issue of long-term incompatible interactions associated with the permanent implants can be eliminated by using various biodegradable metal implants. The recent research is focusing on the use of degradable stents to restore most of the hindrances of capillaries, and coronary arteries by supplying instant blood flow with constant mechanical and structural support. However, internal endothelialization and infection due to the corrosion of implanted stents are not easy to diagnose in the long run. In the recent past, magnesium (Mg) has been widely investigated for the cardiovascular stent applications. Here we made an attempt to understand the biodegradation process of Mg alloy stent by studying the degradation of Mg alloy AZ31 (3 wt% Aluminum, 1 wt% Zn) powder at various time-intervals in simulated blood fluid using the Rheological methods. The degradability of the Mg stent in the arteries affects the stress-strain properties of blood plasma and the subsequent flow conditions. Blood and plasma viscosities alter due to the degradation of Mg resulting from the stress-strain experienced in the blood vessels, in which the stent is inserted. Here our objective was to explore the influence of Mg degradation on the blood plasma viscosity by studying the viscoelastic properties. In this work, the effect of dissolution of Mg alloy AZ31 on the rheological properties of Phosphate Buffer Saline (PBS) at various time intervals have been investigated. The viscosity of the PBS-AZ31 solution increased with the dissolution of both slurries and percolated clear solution. The only exception was day-7 of the percolated clear solution, where viscosity was decreased showing a reduction in viscosity at initial stages of dissolution. The frequency sweep showed the tendency of the PBS-AZ31 gelation up to 100 rad/s frequency.


Subject(s)
Alloys/chemistry , Phosphates/chemistry , Rheology , Buffers , Solubility , Stress, Mechanical
4.
Mater Sci Eng C Mater Biol Appl ; 67: 675-683, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27287167

ABSTRACT

In the realm of biomaterials, metallic materials are widely used for load bearing joints due to their superior mechanical properties. Despite the necessity for long term metallic implants, there are limitations to their prolonged use. Naturally, oxides of titanium have low solubilities and form passive oxide film spontaneously. However, some inclusion and discontinuity spots in oxide film make implant to adopt the decisive nature. These defects heighten the dissolution of metal ions from the implant surface, which results in diminishing bio-integration of titanium implant. To increase the long-term metallic implant stability, surface modifications of titanium alloys are being carried out. In the present study, biomimetic coatings of plasma sprayed hydroxyapatite and titanium were applied to the surface of commercially pure titanium and Ti6Al4V. Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cyclic potentiodynamic polarization and electrochemical impedance spectroscopy were carried out in order to study their electrochemical behavior. Moreover, cytotoxicity analysis was conducted for osteoblast cells by performing MTS assay. It is concluded that both hydroxyapatite and titanium coatings enhance corrosion resistance and improve cytocompatibility.


Subject(s)
Materials Testing , Osteoblasts/metabolism , Plasma Gases/chemistry , Titanium/chemistry , Titanium/pharmacology , Alloys , Animals , Cell Line , Corrosion , Mice , Osteoblasts/cytology , Surface Properties , Titanium/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...