Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Complement Med Ther ; 24(1): 132, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532470

ABSTRACT

Colorectal cancer (CRC) is deadly anaplastic changes in the gastrointestinal tract with high-rate mortality. In recent years, the application of phytocompounds has been extended along with different therapeutic protocols. Here, we monitored the effects of Thymoquinone (TQ) on autophagy via mitochondrial function after modulation of the Wnt/ß-catenin signaling pathway.Human colorectal adenocarcinoma HT-29 cells were treated with TQ (60 µM) and 15 µM Wnt3a inhibitor (LGK974) for 48 h. The survival rate was evaluated using an MTT assay. The expression of Wnt-related factors (c-Myc, and Axin), angiogenesis (VE-Cadherin), and mitophagy-related factors (PINK1, OPTN) was assessed using real-time PCR assay. Protein levels of autophagy factors (Beclin-1, LC3, and P62) were monitored using western blotting. Using flow cytometry analysis, the intracellular accumulation of Rhodamine 123 was evaluated. The migration properties were analyzed using a scratch wound healing assay.Data indicated that TQ can reduce the viability of HT-29 cells compared to the control cells (p < 0.05). The expression of VE-Cadherin was inhibited while the expression of PINK1 was induced in treated cells (p < 0.05). Both LGK974 and TQ-treated cells exhibited activation of autophagy flux (Beclin-1↑, LC3II/I↑, and p62↓) compared to the control group (p < 0.05). TQ can increase intracellular accumulation of Rhodamine 123, indicating the inhibition of efflux mechanisms in cancer cells. Along with these changes, the migration of cells was also reduced (p < 0.05).TQ is a potential phytocompound to alter the dynamic growth of human colorectal HT-29 cells via the modulation of autophagy, and mitophagy-related mechanisms.


Subject(s)
Adenocarcinoma , Benzoquinones , Colorectal Neoplasms , Humans , Rhodamine 123/pharmacology , Rhodamine 123/therapeutic use , Colorectal Neoplasms/drug therapy , Autophagy , Protein Kinases
2.
Bioimpacts ; 13(5): 405-413, 2023.
Article in English | MEDLINE | ID: mdl-37736340

ABSTRACT

Introduction: The inhibition of vascularization into tumor stroma as well as dynamic cell growth is the center of attention. Here, we aimed to examine the role of vandetanib on angiogenesis capacity of breast cancer stem cell (CSCs). Methods: MDA-MB-231 cells were exposed to different doses of vandetanib and survival rate was monitored. Stimulatory effects of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and epidermal growth factor (EGF) were evaluated in vandetanib-treated MDA-MB-231 cells. In vitro tubulogenesis capacity was studied on the Matrigel surface. The synergistic effects of vandetanib on cell survival were also assessed after PI3K and/or Wnt3a inhibition. Vascular endothelial (VE)-cadherin, matrix metalloproteinase-2 (MMP-2), -9, Wnt3a, and p-Akt/Akt ratio were measured using western blotting. Results: Vandetanib reduced survival rate in a dose-dependent manner (P<0.05). Proliferative effects associated with VEGF, FGF, and EGF were blunted in these cells pre-exposed to vandetanib (P<0.05). The microcirculation pattern's triple-negative breast cancer (TNBC) was suppressed by 1, 5 µM of vandetanib (P<0.05). Hence 1, 5 µM of vandetanib potentially decreased the population of CD24- cells. 1 and 5 µM of vandetanib inhibited cell proliferation by blocking PI3K and Wnt3a pathways and decreased the p-Akt/Akt ratio, Wnta3 protein levels (P<0.05). 1 and 5 µM vandetanib combined with PI3K inhibitor diminished metastatic markers including, MMP-2, and MMP-9. The concurrent treatment (PI3K, inhibitor+ 1, 5 µM vandetanib) also considerably reduced epithelial-mesenchymal transition (EMT) markers such as VE-cadherin (P<0.05). Conclusion: Vandetanib suppressed vasculogenic mimicry (VM) networking through blunting stemness properties, coincided with suppression of VE-cadherin in CSCs.

3.
Adv Nutr ; 14(5): 1211-1225, 2023 09.
Article in English | MEDLINE | ID: mdl-37527766

ABSTRACT

Each cell is equipped with a conserved housekeeping mechanism, known as autophagy, to recycle exhausted materials and dispose of injured organelles via lysosomal degradation. Autophagy is an early-stage cellular response to stress stimuli in both physiological and pathological situations. It is thought that the promotion of autophagy flux prevents host cells from subsequent injuries by removing damaged organelles and misfolded proteins. As a correlate, the modulation of autophagy is suggested as a therapeutic approach in diverse pathological conditions. Accumulated evidence suggests that intermittent fasting or calorie restriction can lead to the induction of adaptive autophagy and increase longevity of eukaryotic cells. However, prolonged calorie restriction with excessive autophagy response is harmful and can stimulate a type II autophagic cell death. Despite the existence of a close relationship between calorie deprivation and autophagic response in different cell types, the precise molecular mechanisms associated with this phenomenon remain unclear. Here, we aimed to highlight the possible effects of prolonged and short-term calorie restriction on autophagic response and cell homeostasis.


Subject(s)
Caloric Restriction , Fasting , Humans , Longevity , Autophagy/physiology , Energy Intake
4.
BMC Cancer ; 23(1): 512, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37280524

ABSTRACT

Colorectal cancer (CRC) is the third most widespread cancer and the fourth leading lethal disease among different societies. It is thought that CRC accounts for about 10% of all newly diagnosed cancer cases with high-rate mortality. lncRNAs, belonging to non-coding RNAs, are involved in varied cell bioactivities. Emerging data have confirmed a significant alteration in lncRNA transcription under anaplastic conditions. This systematic review aimed to assess the possible influence of abnormal mTOR-associated lncRNAs in the tumorigenesis of colorectal tissue. In this study, the PRISMA guideline was utilized based on the systematic investigation of published articles from seven databases. Of the 200 entries, 24 articles met inclusion criteria and were used for subsequent analyses. Of note, 23 lncRNAs were prioritized in association with the mTOR signaling pathway with up-regulation (79.16%) and down-regulation (20.84%) trends. Based on the obtained data, mTOR can be stimulated or inhibited during CRC by the alteration of several lncRNAs. Determining the dynamic activity of mTOR and relevant signaling pathways via lncRNAs can help us progress novel molecular therapeutics and medications.


Subject(s)
Colorectal Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...