Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 20909, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34686708

ABSTRACT

Due to unique optical/mechanical properties and significant resistance to harsh radiation environments, corundum (α-Al2O3) is considered as a promising candidate material for windows and diagnostics in forthcoming fusion reactors. However, its properties are affected by radiation-induced (predominantly, by fast neutrons) structural defects. In this paper, we analyze thermal stability and recombination kinetics of primary Frenkel defects in anion sublattice - the F-type electronic centers and complementary oxygen interstitials in fast-neutron-irradiated corundum single crystals. Combining precisely measured thermal annealing kinetics for four types of primary radiation defects (neutral and charged Frenkel pairs) and the advanced model of chemical reactions, we have demonstrated for the first time a co-existence of the two types of interstitial defects - neutral O atoms and negatively charged O- ions (with attributed optical absorption bands peaked at energies of 6.5 eV and 5.6 eV, respectively). From detailed analysis of interrelated kinetics of four oxygen-related defects, we extracted their diffusion parameters (interstitials serve as mobile recombination partners) required for the future prediction of secondary defect-induced reactions and, eventually, material radiation tolerance.

2.
Sci Rep ; 10(1): 15852, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32985570

ABSTRACT

A single radiation-induced superoxide ion [Formula: see text] has been observed for the first time in metal oxides. This structural defect has been revealed in fast-neutron-irradiated (6.9×1018 n/cm2) corundum (α-Al2O3) single crystals using the EPR method. Based on the angular dependence of the EPR lines at the magnetic field rotation in different planes and the determined g tensor components, it is shown that this hole-type [Formula: see text] center (i) incorporates one regular and one interstitial oxygen atoms being stabilized by a trapped hole (S = 1/2), (ii) occupies one oxygen site in the (0001) plane being oriented along the a axis, and (iii) does not contain any other imperfection/defect in its immediate vicinity. The thermal stepwise annealing (observed via the EPR signal and corresponding optical absorption bands) of the [Formula: see text] centers, caused by their destruction with release of a mobile ion (tentatively the oxygen ion with the formal charge -1), occurs at 500-750 K, simultaneously with the partial decay of single F-type centers (mostly with the EPR-active F+ centers). The obtained experimental results are in line with the superoxide defect configurations obtained via density functional theory (DFT) calculations employing the hybrid B3PW exchange-correlation functional. In particular, the DFT calculations confirm the [Formula: see text] center spin S = 1/2, its orientation along the a axis. The [Formula: see text] center is characterized by a short O-O bond length of 1.34 Å and different atomic charges and magnetic moments of the two oxygens. We emphasize the important role of atomic charges and magnetic moments analysis in order to identify the ground state configuration.

3.
Sci Rep ; 10(1): 7810, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32385421

ABSTRACT

MgAl2O4 spinel is important optical material for harsh radiation environment and other important applications. The kinetics of thermal annealing of the basic electron (F, F+) and hole (V) centers in stoichiometric MgAl2O4 spinel irradiated by fast neutrons and protons is analyzed in terms of diffusion-controlled bimolecular reactions. Properties of MgAl2O4 single crystals and optical polycrystalline ceramics are compared. It is demonstrated that both transparent ceramics and single crystals, as well as different types of irradiation show qualitatively similar kinetics, but the effective migration energy Ea and pre-exponent D0 are strongly correlated. Such correlation is discussed in terms of the so-called Meyer-Neldel rule known in chemical kinetics of condensed matter. The results for the irradiated spinel are compared with those for sapphire, MgO and other radiation-resistant materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...