Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 24(1): 84, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36879188

ABSTRACT

BACKGROUND: A cell exhibits a variety of responses to internal and external cues. These responses are possible, in part, due to the presence of an elaborate gene regulatory network (GRN) in every single cell. In the past 20 years, many groups worked on reconstructing the topological structure of GRNs from large-scale gene expression data using a variety of inference algorithms. Insights gained about participating players in GRNs may ultimately lead to therapeutic benefits. Mutual information (MI) is a widely used metric within this inference/reconstruction pipeline as it can detect any correlation (linear and non-linear) between any number of variables (n-dimensions). However, the use of MI with continuous data (for example, normalized fluorescence intensity measurement of gene expression levels) is sensitive to data size, correlation strength and underlying distributions, and often requires laborious and, at times, ad hoc optimization. RESULTS: In this work, we first show that estimating MI of a bi- and tri-variate Gaussian distribution using k-nearest neighbor (kNN) MI estimation results in significant error reduction as compared to commonly used methods based on fixed binning. Second, we demonstrate that implementing the MI-based kNN Kraskov-Stoögbauer-Grassberger (KSG) algorithm leads to a significant improvement in GRN reconstruction for popular inference algorithms, such as Context Likelihood of Relatedness (CLR). Finally, through extensive in-silico benchmarking we show that a new inference algorithm CMIA (Conditional Mutual Information Augmentation), inspired by CLR, in combination with the KSG-MI estimator, outperforms commonly used methods. CONCLUSIONS: Using three canonical datasets containing 15 synthetic networks, the newly developed method for GRN reconstruction-which combines CMIA, and the KSG-MI estimator-achieves an improvement of 20-35% in precision-recall measures over the current gold standard in the field. This new method will enable researchers to discover new gene interactions or better choose gene candidates for experimental validations.


Subject(s)
Algorithms , Gene Regulatory Networks , Cluster Analysis
2.
PLoS Comput Biol ; 18(9): e1009788, 2022 09.
Article in English | MEDLINE | ID: mdl-36121892

ABSTRACT

In Escherichia coli, translocation of RNA polymerase (RNAP) during transcription introduces supercoiling to DNA, which influences the initiation and elongation behaviors of RNAP. To quantify the role of supercoiling in transcription regulation, we developed a spatially resolved supercoiling model of transcription. The integrated model describes how RNAP activity feeds back with the local DNA supercoiling and how this mechanochemical feedback controls transcription, subject to topoisomerase activities and stochastic topological domain formation. This model establishes that transcription-induced supercoiling mediates the cooperation of co-transcribing RNAP molecules in highly expressed genes, and this cooperation is achieved under moderate supercoiling diffusion and high topoisomerase unbinding rates. It predicts that a topological domain could serve as a transcription regulator, generating substantial transcriptional noise. It also shows the relative orientation of two closely arranged genes plays an important role in regulating their transcription. The model provides a quantitative platform for investigating how genome organization impacts transcription.


Subject(s)
DNA-Directed RNA Polymerases , Transcription, Genetic , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial/genetics , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...