Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Ecol Appl ; 33(8): e2922, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37776043

ABSTRACT

Ecological restoration is critical for recovering degraded ecosystems but is challenged by variable success and low predictability. Understanding which outcomes are more predictable and less variable following restoration can improve restoration effectiveness. Recent theory asserts that the predictability of outcomes would follow an order from most to least predictable from coarse to fine community properties (physical structure > taxonomic diversity > functional composition > taxonomic composition) and that predictability would increase with more severe environmental conditions constraining species establishment. We tested this "hierarchy of predictability" hypothesis by synthesizing outcomes along an aridity gradient with 11 grassland restoration projects across the United States. We used 1829 vegetation monitoring plots from 227 restoration treatments, spread across 52 sites. We fit generalized linear mixed-effects models to predict six indicators of restoration outcomes as a function of restoration characteristics (i.e., seed mixes, disturbance, management actions, time since restoration) and used variance explained by models and model residuals as proxies for restoration predictability. We did not find consistent support for our hypotheses. Physical structure was among the most predictable outcomes when the response variable was relative abundance of grasses, but unpredictable for total canopy cover. Similarly, one dimension of taxonomic composition related to species identities was unpredictable, but another dimension of taxonomic composition indicating whether exotic or native species dominated the community was highly predictable. Taxonomic diversity (i.e., species richness) and functional composition (i.e., mean trait values) were intermittently predictable. Predictability also did not increase consistently with aridity. The dimension of taxonomic composition related to the identity of species in restored communities was more predictable (i.e., smaller residuals) in more arid sites, but functional composition was less predictable (i.e., larger residuals), and other outcomes showed no significant trend. Restoration outcomes were most predictable when they related to variation in dominant species, while those responding to rare species were harder to predict, indicating a potential role of scale in restoration predictability. Overall, our results highlight additional factors that might influence restoration predictability and add support to the importance of continuous monitoring and active management beyond one-time seed addition for successful grassland restoration in the United States.


Subject(s)
Ecosystem , Grassland , Poaceae , Seeds , Biodiversity
2.
BMC Ecol Evol ; 23(1): 52, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37710145

ABSTRACT

Anthropomorphic activities have caused major damage to ecosystems worldwide. Although documenting this damage is important, implementing measures to halt and reverse ecosystem decline is critical and is now being prioritised globally. To support global goals to protect and restore nature, BMC Ecology and Evolution has launched a new article collection to encourage contributions from the multifaceted ecosystem restoration community.


Subject(s)
Ecology , Ecosystem
3.
Trends Ecol Evol ; 38(11): 1085-1096, 2023 11.
Article in English | MEDLINE | ID: mdl-37468343

ABSTRACT

Advances in restoration ecology are needed to guide ecological restoration in a variable and changing world. Coexistence theory provides a framework for how variability in environmental conditions and species interactions affects species success. Here, we conceptually link coexistence theory and restoration ecology. First, including low-density growth rates (LDGRs), a classic metric of coexistence, can improve abundance-based restoration goals, because abundances are sensitive to initial treatments and ongoing variability. Second, growth-rate partitioning, developed to identify coexistence mechanisms, can improve restoration practice by informing site selection and indicating necessary interventions (e.g., site amelioration or competitor removal). Finally, coexistence methods can improve restoration assessment, because initial growth rates indicate trajectories, average growth rates measure success, and growth partitioning highlights interventions needed in future.


Subject(s)
Ecosystem , Models, Biological , Ecology
4.
Ecol Appl ; 32(7): e2649, 2022 10.
Article in English | MEDLINE | ID: mdl-35560687

ABSTRACT

Restoration ecology commonly seeks to re-establish species of interest in degraded habitats. Despite a rich understanding of how succession influences re-establishment, there are several outstanding questions that remain unaddressed: are short-term abundances sufficient to determine long-term re-establishment success, and what factors contribute to unpredictable restorations outcomes? In other words, when restoration fails, is it because the restored habitat is substandard, because of strong competition with invasive species, or alternatively due to changing environmental conditions that would equally impact established populations? Here, we re-purpose tools developed from modern coexistence theory to address these questions, and apply them to an effort to restore the endangered Contra Costa goldfields (Lasthenia conjugens) in constructed ("restored") California vernal pools. Using 16 years of data, we construct a population model of L. conjugens, a species of conservation concern due primarily to habitat loss and invasion of exotic grasses. We show that initial, short-term appearances of restoration success from population abundances is misleading, as year-to-year fluctuations cause long-term population growth rates to fall below zero. The failure of constructed pools is driven by lower maximum growth rates compared with reference ("natural") pools, coupled with a stronger negative sensitivity to annual fluctuations in abiotic conditions that yield decreased maximum growth rates. Nonetheless, our modeling shows that fluctuations in competition (mainly with exotic grasses) benefit L. conjugens through periods of competitive release, especially in constructed pools of intermediate pool depth. We therefore show how reductions in invasives and seed addition in pools of particular depths could change the outcome of restoration for L. conjugens. By applying a largely theoretical framework to the urgent goal of ecological restoration, our study provides a blueprint for predicting restoration success, and identifies future actions to reverse species loss.


Subject(s)
Asteraceae , Ecosystem , Introduced Species , Plants , Poaceae , Seasons
5.
Nat Ecol Evol ; 5(9): 1283-1290, 2021 09.
Article in English | MEDLINE | ID: mdl-34294898

ABSTRACT

Restoration of degraded drylands is urgently needed to mitigate climate change, reverse desertification and secure livelihoods for the two billion people who live in these areas. Bold global targets have been set for dryland restoration to restore millions of hectares of degraded land. These targets have been questioned as overly ambitious, but without a global evaluation of successes and failures it is impossible to gauge feasibility. Here we examine restoration seeding outcomes across 174 sites on six continents, encompassing 594,065 observations of 671 plant species. Our findings suggest reasons for optimism. Seeding had a positive impact on species presence: in almost a third of all treatments, 100% of species seeded were growing at first monitoring. However, dryland restoration is risky: 17% of projects failed, with no establishment of any seeded species, and consistent declines were found in seeded species as projects matured. Across projects, higher seeding rates and larger seed sizes resulted in a greater probability of recruitment, with further influences on species success including site aridity, taxonomic identity and species life form. Our findings suggest that investigations examining these predictive factors will yield more effective and informed restoration decision-making.


Subject(s)
Ecosystem , Seedlings , Climate Change , Humans , Plants , Seeds
7.
Sci Rep ; 10(1): 7603, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32371910

ABSTRACT

The challenge of balancing biodiversity protection with economic growth is epitomized by the development of renewable and unconventional energy, whose adoption is aimed at stemming the impacts of global climate change, yet has outpaced our understanding of biodiversity impacts. We evaluated the potential conflict between biodiversity protection and future electricity generation from renewable (wind farms, run-of-river hydro) and non-renewable (shale gas) sources in British Columbia (BC), Canada using three metrics: greenhouse gas (GHG) emissions, electricity cost, and overlap between future development and conservation priorities for several fish and wildlife groups - small-bodied vertebrates, large mammals, freshwater fish - and undisturbed landscapes. Sharp trade-offs in global versus regional biodiversity conservation exist for all energy technologies, and in BC they are currently smallest for wind energy: low GHG emissions, low-moderate overlap with top conservation priorities, and competitive energy cost. GHG emissions from shale gas are 1000 times higher than those from renewable sources, and run-of-river hydro has high overlap with conservation priorities for small-bodied vertebrates. When all species groups were considered simultaneously, run-of-river hydro had moderate overlap (0.56), while shale gas and onshore wind had low overlap with top conservation priorities (0.23 and 0.24, respectively). The unintended cost of distributed energy sources for regional biodiversity suggest that trade-offs based on more diverse metrics must be incorporated into energy planning.

8.
Ecology ; 99(5): 1164-1172, 2018 05.
Article in English | MEDLINE | ID: mdl-29603197

ABSTRACT

There is a need to find generalizable mechanisms supporting ecological resilience, resistance, and recovery. One hypothesized mechanism is landscape connectivity, a habitat configuration that allows movement of biotic and abiotic resources between local patches. Whether connectivity increases all or only one of resistance, resilience, and recovery has not been teased apart, however, and has been difficult to test at large scales and for complex trophic webs. Natural microcosms offer a complex system that can be manipulated to test questions at a landscape-scale relative to the community of study. Here, we test the role of connectivity in altering resistance, resilience, and recovery to a gradient of heating disturbance in moss microcosms. To test across trophic levels, we focused on community composition as our metric of response and applied three connectivity treatments - isolation, connected to an equally disturbed patch, and connected to an undisturbed patch. We found that connectivity between equally disturbed patches boosted resistance of communities to disturbance. Additionally, recovery was linear and rapid in communities connected to undisturbed landscapes, hump shaped when connected to equally disturbed landscapes, and linear but slow in isolated communities. We did not find thresholds on the disturbance gradient at which disturbed communities exhibited zero or increasing dissimilarity to controls through time, so were unable to draw conclusions on the role of connectivity in ecological resilience. Ultimately, isolated communities exhibited increasingly variable composition and slow recovery patterns even in control communities when compared with connected treatments.


Subject(s)
Bryophyta , Ecosystem
9.
Conserv Biol ; 32(3): 672-684, 2018 06.
Article in English | MEDLINE | ID: mdl-29068083

ABSTRACT

Land-use change is the largest proximate threat to biodiversity yet remains one of the most complex to manage. In British Columbia (BC), where large mammals roam extensive tracts of intact habitat, continued land-use development is of global concern. Extant mammal diversity in BC is unrivalled in North America owing, in part, to its unique position at the intersection of alpine, boreal, and temperate biomes. Despite high conservation values, understanding of cumulative ecological impacts from human development is limited. Using cumulative-effects-assessment (CEA) methods, we assessed the current human footprint over 16 regional ecosystems and 7 large mammal species. Using historical and current range estimates of the mammals, we investigated impacts of human land use on species' persistence. For ecosystems, we found that bunchgrass, coastal Douglas fir, and ponderosa pine have been subjected to over 50% land-use conversion, and over 85% of their spatial extent has undergone either direct or estimated indirect impacts. Of the mammals we considered, wolves were the least affected by land conversion, yet all species had reduced ranges compared with historical estimates. We found evidence of a hard trade-off between development and conservation, most clearly for mammals with large distributions and ecosystems with high levels of conversion. Rather than serve as a platform to monitor species decline, we strongly advocate these data be used to inform land-use planning and to assess current conservation efforts. More generally, CEAs offer a robust tool to inform wildlife and habitat conservation at scale.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Biodiversity , British Columbia , Humans , North America
10.
Ecol Appl ; 23(6): 1331-44, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24147406

ABSTRACT

Shifts in disturbance regime have often been linked to invasion in systems by native and nonnative species. This process can have negative effects on biodiversity and ecosystem function. Degradation may be ameliorated by the reinstatement of the disturbance regimes, such as the reintroduction of fire in pyrogenic systems. Modeling is one method through which potential outcomes of different regimes can be investigated. We created a population model to examine the control of a native invasive that is expanding and increasing in abundance due to suppressed fire. Our model, parameterized with field data from a case study of the tree Allocasuarina huegeliana in Australian sandplain heath, simulated different fire return intervals with and without the additional management effort of mechanical removal of the native invader. Population behavior under the different management options was assessed, and general estimates of potential biodiversity impacts were compared. We found that changes in fire return intervals made no significant difference in the increase and spread of the population. However, decreased fire return intervals did lower densities reached in the simulated heath patch as well as the estimated maximum biodiversity impacts. When simulating both mechanical removal and fire, we found that the effects of removal depended on the return intervals and the strategy used. Increase rates were not significantly affected by any removal strategy. However, we found that removal, particularly over the whole patch rather than focusing on satellite populations, could decrease average and maximum densities reached and thus decrease the predicted biodiversity impacts. Our simulation model shows that disturbance-based management has the potential to control native invasion in cases where shifted disturbance is the likely driver of the invasion. The increased knowledge gained through the modeling methods outlined can inform management decisions in fire regime planning that takes into consideration control of an invasive species. Although particularly applicable to native invasives, when properly informed by empirical knowledge these techniques can be expanded to management of invasion by nonnative species, either by restoring historic disturbance regimes or by instating novel regimes in innovative ways.


Subject(s)
Environmental Monitoring , Introduced Species , Models, Biological , Animals , Computer Simulation , Fires , Trees/classification , Trees/physiology , Western Australia
11.
PLoS One ; 2(9): e824, 2007 Sep 05.
Article in English | MEDLINE | ID: mdl-17786196

ABSTRACT

A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275 cells of approximately 4 sq km). Using a maximum entropy method we construct niche models for 10 malaria vector species based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes). For seven vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis) these are the first published niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A. quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of previous models. The results of the niche models are incorporated into three relative risk models which assume different ecological interactions between vector species. The "additive" model assumes no interaction; the "minimax" model assumes maximum relative risk due to any vector in a cell; and the "competitive exclusion" model assumes the relative risk that arises from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human population density. Relative risk maps are produced from these models. All models predict that human population density is the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol developed here can be used for any other vector-borne disease.


Subject(s)
Anopheles/parasitology , Insect Vectors , Malaria/epidemiology , Models, Biological , Africa/epidemiology , Animals , Humans , Malaria/transmission , Risk Factors , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...