Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 26(27): 27897-27904, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31346943

ABSTRACT

Management of organic biomedical waste is a global quandary, and it is becoming difficult to confront day by day. Conversion of organic biomedical waste into fertilizer is of great concern. In the present research, organic biomedical waste samples (blood swabs, dressing swabs, and used cotton) were collected then after cow dung was collected in sterile container and immediately transported to the laboratory and screened for any gastrointestinal infection by using routine microscopy for intestinal parasitic infection, routine bacterial culture, and fecal occult blood for any intestinal bleeding. Then after, the pure culture of organisms and fungus were prepared, and further samples were subjected to degradation for 288 h by using various organisms and fungus. Then after, the specific quantity of biomedical waste was subjected for incineration. The physicochemical parameters of biomedical waste samples were analyzed. Then treated samples were mixed with soil to confirm a role as potential fertilizer. Then after, tomato plantation was done and phytochemical parameters of tomato plant were analyzed. This study states that organic biomedical waste produces a sanitary and stable fertilizer.


Subject(s)
Fertilizers , Medical Waste Disposal/methods , Animals , Biodegradation, Environmental , Cattle , Feces , Female , Incineration , Solanum lycopersicum , Soil
2.
Environ Sci Pollut Res Int ; 26(7): 6696-6705, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30632041

ABSTRACT

Sustainable organic biomedical waste management is a difficult challenge as this has become one of the serious hazardous wastes. Improper disposal of organic biomedical waste can lead to direct and indirect transmission of diseases. In the present research, the organic biomedical waste samples (32 g blood swabs, 12 g dressing swabs, and 6 g used cotton) were treated with Azadirachta indica ("Neem") and Nicotiana tabacum ("Tobacco") extracts at various concentrations and kept for 96-h degradation, followed by evaluation of physicochemical parameters. The physicochemical results of organic biomedical waste like pH of the experimental sets were within the optimum range and there was 63.33% of decrease of TDS, 86.15% and 95.30% reduction of BOD and COD, respectively was observed at the end of 96 h. The residues were mixed with 1000 g soil to confirm their role as a potential fertilizer. The physicochemical parameters of soil sample F6 (neem+tobacco) show an excellent result among all. The phytochemical parameters of a plant were also enhanced as compared to control. The soil samples and the tomato plants were also not polluted by the heavy metals, they are within the limit given by WHO. The present study deals with the conversion of organic biomedical waste into potential fertilizer by using plant extracts which can purely be financially profitable to the farmer.


Subject(s)
Conservation of Natural Resources , Waste Management/methods , Waste Products , Azadirachta , Fertilizers , Metals, Heavy , Soil
3.
Biochem Biophys Rep ; 17: 71-80, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30582010

ABSTRACT

The present investigation deals with facile polyol mediated synthesis and characterization of ZnO nanoparticles and their antimicrobial activities against pathogenic microorganisms. The synthesis process was carried out by refluxing zinc acetate precursor in diethylene glycol(DEG) and triethylene glycol(TEG) in the presence and in the absence of sodium acetate for 2 h and 3 h. All synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD), UV visible spectroscopy (UV), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy(FESEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) technique. All nanoparticles showed different degree of antibacterial and antibiofilm activity against Gram-positive Staphylococcus aureus (NCIM 2654)and Gram-negative Proteus vulgaris (NCIM 2613). The antibacterial and antibiofilm activity was inversely proportional to the size of the synthesized ZnO nanoparticles. Among all prepared particles, ZnO nanoparticles with least size (~ 15 nm) prepared by refluxing zinc acetate dihydrate in diethylene glycol for 3 h exhibited remarkable antibacterial and antibiofilm activity which may serve as potential alternatives in biomedical application.

SELECTION OF CITATIONS
SEARCH DETAIL
...