Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Cell Biol ; 24(9): 1341-1349, 2022 09.
Article in English | MEDLINE | ID: mdl-36100738

ABSTRACT

Mammalian embryos sequentially differentiate into trophectoderm and an inner cell mass, the latter of which differentiates into primitive endoderm and epiblast. Trophoblast stem (TS), extraembryonic endoderm (XEN) and embryonic stem (ES) cells derived from these three lineages can self-assemble into synthetic embryos, but the mechanisms remain unknown. Here, we show that a stem cell-specific cadherin code drives synthetic embryogenesis. The XEN cell cadherin code enables XEN cell sorting into a layer below ES cells, recapitulating the sorting of epiblast and primitive endoderm before implantation. The TS cell cadherin code enables TS cell sorting above ES cells, resembling extraembryonic ectoderm clustering above epiblast following implantation. Whereas differential cadherin expression drives initial cell sorting, cortical tension consolidates tissue organization. By optimizing cadherin code expression in different stem cell lines, we tripled the frequency of correctly formed synthetic embryos. Thus, by exploiting cadherin codes from different stages of development, lineage-specific stem cells bypass the preimplantation structure to directly assemble a postimplantation embryo.


Subject(s)
Cadherins , Endoderm , Mammals/embryology , Animals , Blastocyst , Cadherins/genetics , Cadherins/metabolism , Embryonic Stem Cells/metabolism , Germ Layers
3.
PLoS Comput Biol ; 15(11): e1007454, 2019 11.
Article in English | MEDLINE | ID: mdl-31770364

ABSTRACT

Planar cell polarity (PCP), the long-range in-plane polarization of epithelial tissues, provides directional information that guides a multitude of developmental processes at cellular and tissue levels. While it is manifest that cells utilize both intracellular and intercellular interactions, the coupling between the two modules, essential to the coordination of collective polarization, remains an active area of investigation. We propose a generalized reaction-diffusion model to study the role of intracellular interactions in the emergence of long-range polarization, and show that the nonlocality of cytoplasmic interactions, i.e. coupling of membrane proteins localized on different cell-cell junctions, is of vital importance to the faithful detection of weak directional signals, and becomes increasingly more crucial to the stability of polarization against the deleterious effects of large geometric irregularities. We demonstrate that nonlocal interactions are necessary for geometric information to become accessible to the PCP components. The prediction of the model regarding polarization in elongated tissues, is shown to be in agreement with experimental observations, where the polarity emerges perpendicular to the axis of elongation. Core PCP is adopted as a model pathway, in term of which we interpret the model parameters. To this end, we introduce three distinct classes of mutations, (I) in membrane proteins, (II) in cytoplasmic proteins, and (III) local enhancement of geometric disorder. Comparing the in silico and in vivo phenotypes, we show that our model successfully recapitulates the salient phenotypic features of these mutations. Exploring the parameter space helps us shed light on the role of cytoplasmic proteins in cell-cell communications, and make falsifiable predictions regarding the cooperation of cytoplasmic and membrane proteins in the establishment of long-range polarization.


Subject(s)
Body Patterning/physiology , Cell Polarity/physiology , Computational Biology/methods , Animals , Cell Communication , Cytoplasm/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Membrane Proteins/metabolism , Models, Biological , Models, Theoretical , Signal Transduction
5.
Phys Rev Lett ; 115(13): 135305, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26451565

ABSTRACT

We propose that impurities in a Bose-Einstein condensate which is coupled to a transversely laser-pumped multimode cavity form an experimentally accessible and analytically tractable model system for the study of impurities solvated in correlated liquids and the breakdown of linear-response theory [corrected]. As the strength of the coupling constant between the impurity and the Bose-Einstein condensate is increased, which is possible through Feshbach resonance methods, the impurity passes from a large to a small polaron state, and then to an impurity-soliton state. This last transition marks the breakdown of linear-response theory.

6.
J Chem Phys ; 140(5): 054512, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24511957

ABSTRACT

We determine time correlation functions and dynamic structure factors of the number and charge density of liquid water from molecular dynamics simulations. Using these correlation functions we consider dielectric friction and electro-acoustic coupling effects via linear response theory. From charge-charge correlations, the drag force on a moving point charge is derived and found to be maximal at a velocity of around 300 m/s. Strong deviations in the resulting friction coefficients from approximate theory employing a single Debye relaxation mode are found that are due to non-Debye-like resonances at high frequencies. From charge-mass cross-correlations the ultrasonic vibration potential is derived, which characterizes the conversion of acoustic waves into electric time-varying potentials. Along the dispersion relation for normal sound waves in water, the ultrasonic vibration potential is shown to strongly vary and to increase for larger wavelengths.

SELECTION OF CITATIONS
SEARCH DETAIL
...