Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37514791

ABSTRACT

Anthropogenic emissions of ammonia to the atmosphere, particularly those from agricultural sources, can be damaging to the environment and human health and can drive a need for sensor technologies that can be used to detect and quantify the emissions. Mobile sensing approaches that can be deployed on ground-based or aerial vehicles can provide scalable solutions for high throughput measurements but require relatively compact and low-power sensor systems. This contribution presents an ammonia sensor based on wavelength modulation spectroscopy (WMS) integrated with a Herriott multi-pass cell and a quantum cascade laser (QCL) at 10.33 µm oriented to mobile use. An open-path configuration is used to mitigate sticky-gas effects and achieve high time-response. The final sensor package is relatively small (~20 L), lightweight (~3.5 kg), battery-powered (<30 W) and operates autonomously. Details of the WMS setup and analysis method are presented along with laboratory tests showing sensor accuracy (<~2%) and precision (~4 ppb in 1 s). Initial field deployments on both ground vehicles and a fixed-wing unmanned aerial vehicle (UAV) are also presented.

2.
ACS Appl Mater Interfaces ; 9(31): 25656-25661, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28731320

ABSTRACT

Superomniphobic surfaces (i.e., surfaces that are extremely repellent to both high surface tension liquids like water and low surface tension liquid like oils) can be fabricated through a combination of surface chemistry that imparts low solid surface energy with a re-entrant surface texture. Recently, surface texturing with lasers has received significant attention because laser texturing is scalable, solvent-free, and can produce a monolithic texture on virtually any material. In this work, we fabricated nanostructured omniphobic and superomniphobic surfaces with a variety of materials using a simple, inexpensive and commercially available CO2 laser engraver. Further, we demonstrated that the nanostructured omniphobic and superomniphobic surfaces fabricated using our laser texturing technique can be used to design patterned surfaces, surfaces with discrete domains of the desired wettability, and on-surface microfluidic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...