Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 40(8): 1098-1107, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35078662

ABSTRACT

The rapid spread of the COVID-19 pandemic, with its devastating medical and economic impacts, triggered an unprecedented race toward development of effective vaccines. The commercialized vaccines are parenterally administered, which poses logistic challenges, while adequate protection at the mucosal sites of virus entry is questionable. Furthermore, essentially all vaccine candidates target the viral spike (S) protein, a surface protein that undergoes significant antigenic drift. This work aimed to develop an oral multi-antigen SARS-CoV-2 vaccine comprised of the receptor binding domain (RBD) of the viral S protein, two domains of the viral nucleocapsid protein (N), and heat-labile enterotoxin B (LTB), a potent mucosal adjuvant. The humoral, mucosal and cell-mediated immune responses of both a three-dose vaccination schedule and a heterologous subcutaneous prime and oral booster regimen were assessed in mice and rats, respectively. Mice receiving the oral vaccine compared to control mice showed significantly enhanced post-dose-3 virus-neutralizing antibody, anti-S IgG and IgA production and N-protein-stimulated IFN-γ and IL-2 secretion by T cells. When administered as a booster to rats following parenteral priming with the viral S1 protein, the oral vaccine elicited markedly higher neutralizing antibody titres than did oral placebo booster. A single oral booster following two subcutaneous priming doses elicited serum IgG and mucosal IgA levels similar to those raised by three subcutaneous doses. In conclusion, the oral LTB-adjuvanted multi-epitope SARS-CoV-2 vaccine triggered versatile humoral, cellular and mucosal immune responses, which are likely to provide protection, while also minimizing technical hurdles presently limiting global vaccination, whether by priming or booster programs.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Animals , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunity, Cellular , Immunoglobulin A , Immunoglobulin G , Mice , Pandemics , Rats , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
2.
Vaccine ; 34(22): 2513-8, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27079929

ABSTRACT

Passive immunization as a method to protect birds has been tested for many years and shown to be effective. Its advantages over active vaccination include no use of partially virulent viruses, overcoming the gap in the level of protection at young age due to interference of maternal antibodies to raise self-immune response following active vaccination and the possible immunosuppressive effect of attenuated vaccine viruses. However, a major obstacle to its implementation is its relatively high cost which is dependent, among other things, mainly on two factors: the efficacy of antibody production, and the use of specific pathogen-free (SPF) birds for antibody production to avoid the possible transfer of pathogens from commercial layers. In this study we show efficient production of immunoglobulin Y (IgY) against four different pathogens simultaneously in the same egg, and treatment of the extracted IgY with formalin to negate the need for SPF birds. Formalin, a common registered sterilization compound in vaccine production, was shown not to interfere with the Fab specific antigen binding or Fc-complement activation of the antibody. Following injection of 1-day-old broilers with antibodies against infectious bursal disease virus, protective antibody levels were acquired for the entire period of sensitivity to this pathogen (35 days). Passive vaccination with formalin-sterilized IgY against multiple antigens extracted from one commercial egg may be a cost-effective and advantageous complementary or alternative to attenuated vaccines in poultry.


Subject(s)
Antibodies, Viral/biosynthesis , Chickens/immunology , Immunization, Passive/veterinary , Immunoglobulins/immunology , Poultry Diseases/prevention & control , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Birnaviridae Infections/immunology , Birnaviridae Infections/veterinary , Complement Activation , Eggs , Formaldehyde , Immunization, Passive/economics , Immunization, Passive/methods , Immunoglobulins/blood , Immunoglobulins/metabolism , Infectious bursal disease virus , Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Poultry Diseases/virology , Specific Pathogen-Free Organisms , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects
3.
Vaccine ; 33(3): 472-8, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25444785

ABSTRACT

In the first 10-14 days of a chick's life, protection is conferred by maternal antibodies. Further broiler protection is achieved by active vaccination. However, the high level of maternal antibodies interferes with the induction of an effective immune response by vaccination at a young age. As a result, there is a gap between the reduction in protective maternal antibodies and elevation of self-produced antibodies following active vaccination. The major aim of this study was to test an approach consisting of passive and active vaccination to overcome this gap and to provide continuous resistance to infectious viral diseases during the broiler's growth period. Newcastle disease virus (NDV), which is one of the world's most prevalent infectious diseases of poultry, was tested as a model. Following subcutaneous injection of 18 hemagglutination-inhibiting (HI) units of anti-NDV immunoglobulin Y per 1-day-old chick, protective log2 antibody titers above 4 could be detected to at least 17 days of age. The combination of passive immunization on day 1 of age with attenuated live vaccination on day 10 led to high protective titers throughout the entire growth period, up to 41 days of age. Moreover, the HI titers in the group of birds immunized with the combined vaccination were significantly more homogeneous than those in the group vaccinated only with live virus. Thus, full protection against NDV of all broilers in flock during their entire growth period was achieved by a vaccination regime that combines passive immunization and live vaccination.


Subject(s)
Antibody Formation , Immunity, Maternally-Acquired , Immunization, Passive/methods , Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Vaccination/methods , Animals , Antibodies, Viral/administration & dosage , Antibodies, Viral/blood , Chickens , Immunoglobulins/administration & dosage , Immunoglobulins, Intravenous/administration & dosage , Newcastle Disease/immunology , Treatment Outcome , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...