Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 2606, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297034

ABSTRACT

Predicting wildfire spread behavior is an extremely important task for many countries. On a small scale, it is possible to ensure constant monitoring of the natural landscape through ground means. However, on the scale of large countries, this becomes practically impossible due to remote and vast forest territories. The most promising source of data in this case that can provide global monitoring is remote sensing data. Currently, the main challenge is the development of an effective pipeline that combines geospatial data collection and the application of advanced machine learning algorithms. Most approaches focus on short-term fire spreading prediction and utilize data from unmanned aerial vehicles (UAVs) for this purpose. In this study, we address the challenge of predicting fire spread on a large scale and consider a forecasting horizon ranging from 1 to 5 days. We train a neural network model based on the MA-Net architecture to predict wildfire spread based on environmental and climate data, taking into account spatial distribution features. Estimating the importance of features is another critical issue in fire behavior prediction, so we analyze their contribution to the model's results. According to the experimental results, the most significant features are wind direction and land cover parameters. The F1-score for the predicted burned area varies from 0.64 to 0.68 depending on the day of prediction (from 1 to 5 days). The study was conducted in northern Russian regions and shows promise for further transfer and adaptation to other regions. This geospatial data-based artificial intelligence (AI) approach can be beneficial for supporting emergency systems and facilitating rapid decision-making.

2.
Sci Rep ; 13(1): 22167, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38092822

ABSTRACT

Tree age is one of the key characteristics of a forest, along with tree species and height. It affects management decisions of forest owners and allows researchers to analyze environmental characteristics in support of sustainable development. Although forest age is of primary significance, it can be unknown for remote areas and large territories. Currently, remote sensing (RS) data supports rapid information gathering for wide territories. To automate RS data processing and estimate forest characteristics, machine learning (ML) approaches are applied. Although there are different data sources that can be used as features in ML models, there is no unified strategy on how to prepare a dataset and define a training task to estimate forest age. Therefore, in this work, we aim to conduct a comprehensive study on forest age estimation using remote sensing observations of the Sentinel-2 satellite and two ML-based approaches for forestry inventory data, namely stand-based and pixel-based. We chose the CatBoost algorithm to assess these two approaches. To establish the robustness of the pipeline, an in-depth analysis is conducted, embracing diverse scenarios incorporating dominant species information, tree height, Digital Elevation Model (DEM), and vegetation indices. We performed experiments on forests in the northern Arkhangelsk region and obtained the best Mean Absolute Error (MAE) result of 7 years in the case of the stand-based approach and 6 years in the case of the pixel-based approach. These results are achieved for all available input data such as spectral satellites bands, vegetation indices, and auxiliary forest characteristics (dominant species and height). However, when only spectral bands are used, the MAE metric is the same both for per-pixel and per-stand approaches and equals 11 years. It was also shown that, despite high correlation between forest age and height, only height can not be used for accurate age estimation: the MAE increases to 18 and 26 years for per-pixel and per-stand approaches, respectively. The conducted study might be useful for further investigation of forest ecosystems through remote sensing observations.

3.
Entropy (Basel) ; 25(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37509935

ABSTRACT

Food quality control is an important task in the agricultural domain at the postharvest stage for avoiding food losses. The latest achievements in image processing with deep learning (DL) and computer vision (CV) approaches provide a number of effective tools based on the image colorization and image-to-image translation for plant quality control at the postharvest stage. In this article, we propose the approach based on Generative Adversarial Network (GAN) and Convolutional Neural Network (CNN) techniques to use synthesized and segmented VNIR imaging data for early postharvest decay and fungal zone predictions as well as the quality assessment of stored apples. The Pix2PixHD model achieved higher results in terms of VNIR images translation from RGB (SSIM = 0.972). Mask R-CNN model was selected as a CNN technique for VNIR images segmentation and achieved 58.861 for postharvest decay zones, 40.968 for fungal zones and 94.800 for both the decayed and fungal zones detection and prediction in stored apples in terms of F1-score metric. In order to verify the effectiveness of this approach, a unique paired dataset containing 1305 RGB and VNIR images of apples of four varieties was obtained. It is further utilized for a GAN model selection. Additionally, we acquired 1029 VNIR images of apples for training and testing a CNN model. We conducted validation on an embedded system equipped with a graphical processing unit. Using Pix2PixHD, 100 VNIR images from RGB images were generated at a rate of 17 frames per second (FPS). Subsequently, these images were segmented using Mask R-CNN at a rate of 0.42 FPS. The achieved results are promising for enhancing the food study and control during the postharvest stage.

4.
Sci Rep ; 12(1): 6128, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35414080

ABSTRACT

This research aims to establish the possible habitat suitability of Heracleum sosnowskyi (HS), one of the most aggressive invasive plants, in current and future climate conditions across the territory of the European part of Russia. We utilised a species distribution modelling framework using publicly available data of plant occurrence collected in citizen science projects (CSP). Climatic variables and soil characteristics were considered to follow possible dependencies with environmental factors. We applied Random Forest to classify the study area. We addressed the problem of sampling bias in CSP data by optimising the sampling size and implementing a spatial cross-validation scheme. According to the Random Forest model built on the finally selected data shape, more than half of the studied territory in the current climate corresponds to a suitability prediction score higher than 0.25. The forecast of habitat suitability in future climate was highly similar for all climate models. Almost the whole studied territory showed the possibility for spread with an average suitability score of 0.4. The mean temperature of the wettest quarter and precipitation of wettest month demonstrated the highest influence on the HS distribution. Thus, currently, the whole study area, excluding the north, may be considered as s territory with a high risk of HS spreading, while in the future suitable locations for the HS habitat will include high latitudes. We showed that chosen geodata pre-processing, and cross-validation based on geospatial blocks reduced significantly the sampling bias. Obtained predictions could help to assess the risks accompanying the studied plant invasion capturing the patterns of the spread, and can be used for the conservation actions planning.


Subject(s)
Climate Change , Heracleum , Ecosystem , Forecasting , Plants , Soil
5.
Sci Rep ; 11(1): 23822, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893629

ABSTRACT

Natural environments are recognized as complex heterogeneous structures thus requiring numerous multi-scale observations to yield a comprehensive description. To monitor the current state and identify negative impacts of human activity, fast and precise instruments are in urgent need. This work provides an automated approach to the assessment of spatial variability of water quality using guideline values on the example of 1526 water samples comprising 21 parameters at 448 unique locations across the New Moscow region (Russia). We apply multi-task Gaussian process regression (GPR) to model the measured water properties across the territory, considering not only the spatial but inter-parameter correlations. GPR is enhanced with a Spectral Mixture Kernel to facilitate a hyper-parameter selection and optimization. We use a 5-fold cross-validation scheme along with [Formula: see text]-score to validate the results and select the best model for simultaneous prediction of water properties across the area. Finally, we develop a novel Probabilistic Substance Quality Index (PSQI) that combines probabilistic model predictions with the regulatory standards on the example of the epidemiological rules and hygienic regulations established in Russia. Moreover, we provide an interactive map of experimental results at 100 m2 resolution. The proposed approach contributes significantly to the development of flexible tools in environment quality monitoring, being scalable to different standard systems, number of observation points, and region of interest. It has a strong potential for adaption to environmental and policy changes and non-unified assessment conditions, and may be integrated into support-decision systems for the rapid estimation of water quality spatial distribution.

6.
Sensors (Basel) ; 21(16)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34451088

ABSTRACT

The near-infrared (NIR) spectral range (from 780 to 2500 nm) of the multispectral remote sensing imagery provides vital information for landcover classification, especially concerning vegetation assessment. Despite the usefulness of NIR, it does not always accomplish common RGB. Modern achievements in image processing via deep neural networks make it possible to generate artificial spectral information, for example, to solve the image colorization problem. In this research, we aim to investigate whether this approach can produce not only visually similar images but also an artificial spectral band that can improve the performance of computer vision algorithms for solving remote sensing tasks. We study the use of a generative adversarial network (GAN) approach in the task of the NIR band generation using only RGB channels of high-resolution satellite imagery. We evaluate the impact of a generated channel on the model performance to solve the forest segmentation task. Our results show an increase in model accuracy when using generated NIR compared to the baseline model, which uses only RGB (0.947 and 0.914 F1-scores, respectively). The presented study shows the advantages of generating the extra band such as the opportunity to reduce the required amount of labeled data.


Subject(s)
Algorithms , Neural Networks, Computer , Image Processing, Computer-Assisted , Satellite Imagery
7.
Ecotoxicol Environ Saf ; 194: 110410, 2020 May.
Article in English | MEDLINE | ID: mdl-32163774

ABSTRACT

Environment pollutants, especially those from total petroleum hydrocarbons (TPH), have a highly complex chemical, biological and physical impact on soils. Here we study this influence via modelling the TPH acute phytotoxicity effects on eleven samples of soils from Sakhalin island in greenhouse conditions. The soils were contaminated with crude oil in different doses ranging from the 3.0-100.0 g kg-1. Measuring the Hordeum vulgare root elongation, the crucial ecotoxicity parameter, we have estimated. We have also investigated the contrast effect in different soils. To predict TPH phytotoxicity different machine learning models were used, namely artificial neural network (ANN) and support vector machine (SVM). The models under discussion were proved to be valid using the mean absolute error method (MAE), the root mean square error method (RMSE), and the coefficient of determination (R2). We have shown that ANN and SVR can successfully predict barley response based on soil chemical properties (pH, LOI, N, P, K, clay, TPH). The best achieved accuracy was as following: MAE - 8.44, RMSE -11.05, and R2 -0.80.


Subject(s)
Artificial Intelligence , Hordeum/drug effects , Hydrocarbons/toxicity , Models, Theoretical , Petroleum/toxicity , Soil Pollutants/toxicity , Hordeum/metabolism , Hydrocarbons/analysis , Islands , Neural Networks, Computer , Petroleum/analysis , Russia , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis
8.
Plant Methods ; 15: 43, 2019.
Article in English | MEDLINE | ID: mdl-31168313

ABSTRACT

BACKGROUND: Efficient seed germination is a crucial task at the beginning of crop cultivation. Although boundaries of environmental parameters that should be maintained are well studied, fine-tuning can significantly improve the efficiency, which is infeasible to be done manually due to the high dimensionality of the parameter space. RESULTS: Traditionally seed germination is performed in climatic chambers with controlled environmental conditions. In this study, we perform a set of multiple-day seed germination experiments in the controllable environment. We use up to three climatic chambers to adjust humidity, temperature, water supply and apply machine learning algorithm called Bayesian optimization (BO) to find the parameters that improve seed germination. Experimental results show that our approach allows to increase the germination efficiency for different types of seeds compared to the initial expert knowledge-based guess. CONCLUSION: Our experiments demonstrated that BO could help to identify the values of the controllable parameters that increase seed germination efficiency. The proposed methodology is model-free, and we argue that it may be useful for a variety of optimization problems in precision agriculture. Further experimental studies are required to investigate the effectiveness of our approach for different seed cultures and controlled parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...