Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Sensors (Basel) ; 23(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37571726

ABSTRACT

Wheat stripe rust disease (WRD) is extremely detrimental to wheat crop health, and it severely affects the crop yield, increasing the risk of food insecurity. Manual inspection by trained personnel is carried out to inspect the disease spread and extent of damage to wheat fields. However, this is quite inefficient, time-consuming, and laborious, owing to the large area of wheat plantations. Artificial intelligence (AI) and deep learning (DL) offer efficient and accurate solutions to such real-world problems. By analyzing large amounts of data, AI algorithms can identify patterns that are difficult for humans to detect, enabling early disease detection and prevention. However, deep learning models are data-driven, and scarcity of data related to specific crop diseases is one major hindrance in developing models. To overcome this limitation, in this work, we introduce an annotated real-world semantic segmentation dataset named the NUST Wheat Rust Disease (NWRD) dataset. Multileaf images from wheat fields under various illumination conditions with complex backgrounds were collected, preprocessed, and manually annotated to construct a segmentation dataset specific to wheat stripe rust disease. Classification of WRD into different types and categories is a task that has been solved in the literature; however, semantic segmentation of wheat crops to identify the specific areas of plants and leaves affected by the disease remains a challenge. For this reason, in this work, we target semantic segmentation of WRD to estimate the extent of disease spread in wheat fields. Sections of fields where the disease is prevalent need to be segmented to ensure that the sick plants are quarantined and remedial actions are taken. This will consequently limit the use of harmful fungicides only on the targeted disease area instead of the majority of wheat fields, promoting environmentally friendly and sustainable farming solutions. Owing to the complexity of the proposed NWRD segmentation dataset, in our experiments, promising results were obtained using the UNet semantic segmentation model and the proposed adaptive patching with feedback (APF) technique, which produced a precision of 0.506, recall of 0.624, and F1 score of 0.557 for the rust class.


Subject(s)
Basidiomycota , Triticum , Humans , Artificial Intelligence , Plant Diseases , Crops, Agricultural
3.
Environ Monit Assess ; 194(2): 133, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35089424

ABSTRACT

Water is a basic and primary resource which is required for sustenance of life on the Earth. The importance of water quality is increasing with the ascending water pollution owing to industrialization and depletion of fresh water sources. The countries having low control on reducing water pollution are likely to retain poor public health. Additionally, the methods being used in most developing countries are not effective and are based more on human intervention than on technological and automated solutions. Typically, most of the water samples and related data are monitored and tested in laboratories, which eventually consumes time and effort at the expense of producing fewer reliable results. In view of the above, there is an imperative need to devise a proper and systematic system to regularly monitor and manage the quality of water resources to arrest the related issues. Towards such ends, Internet of Things (IoT) is a great alternative to such traditional approaches which are complex and ineffective and it allows taking remote measurements in real-time with minimal human involvement. The proposed system consists of various water quality measuring nodes encompassing various sensors including dissolved oxygen, turbidity, pH level, water temperature, and total dissolved solids. These sensors nodes deployed at various sites of the study area transmit data to the server for processing and analysis using GSM modules. The data collected over months is used for water quality classification using water quality indices and for bacterial prediction by employing machine learning algorithms. For data visualization, a Web portal is developed which consists of a dashboard of Web services to display the heat maps and other related info-graphics. The real-time water quality data is collected using IoT nodes and the historic data is acquired from the Rawal Lake Filtration Plant. Several machine learning algorithms including neural networks (NN), convolutional neural networks (CNN), ridge regression (RR), support vector machines (SVM), decision tree regression (DTR), Bayesian regression (BR), and an ensemble of all models are trained for fecal coliform bacterial prediction, where SVM and Bayesian regression models have shown the optimal performance with mean squared error (MSE) of 0.35575 and 0.39566 respectively. The proposed system provides an alternative and more convenient solution for bacterial prediction, which otherwise is done manually in labs and is an expensive and time-consuming approach. In addition to this, it offers several other advantages including remote monitoring, ease of scalability, real-time status of water quality, and a portable hardware.


Subject(s)
Internet of Things , Bayes Theorem , Environmental Monitoring , Humans , Machine Learning , Water Quality
4.
Front Neurosci ; 15: 755817, 2021.
Article in English | MEDLINE | ID: mdl-35069095

ABSTRACT

Electroencephalogram (EEG) is widely used for the diagnosis of neurological conditions like epilepsy, neurodegenerative illnesses and sleep related disorders. Proper interpretation of EEG recordings requires the expertise of trained neurologists, a resource which is scarce in the developing world. Neurologists spend a significant portion of their time sifting through EEG recordings looking for abnormalities. Most recordings turn out to be completely normal, owing to the low yield of EEG tests. To minimize such wastage of time and effort, automatic algorithms could be used to provide pre-diagnostic screening to separate normal from abnormal EEG. Data driven machine learning offers a way forward however, design and verification of modern machine learning algorithms require properly curated labeled datasets. To avoid bias, deep learning based methods must be trained on large datasets from diverse sources. This work presents a new open-source dataset, named the NMT Scalp EEG Dataset, consisting of 2,417 recordings from unique participants spanning almost 625 h. Each recording is labeled as normal or abnormal by a team of qualified neurologists. Demographic information such as gender and age of the patient are also included. Our dataset focuses on the South Asian population. Several existing state-of-the-art deep learning architectures developed for pre-diagnostic screening of EEG are implemented and evaluated on the NMT, and referenced against baseline performance on the well-known Temple University Hospital EEG Abnormal Corpus. Generalization of deep learning based architectures across the NMT and the reference datasets is also investigated. The NMT dataset is being released to increase the diversity of EEG datasets and to overcome the scarcity of accurately annotated publicly available datasets for EEG research.

6.
Sensors (Basel) ; 19(14)2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31330773

ABSTRACT

Forged documents and counterfeit currency can be better detected with multispectral imaging in multiple color channels instead of the usual red, green and blue. However, multispectral cameras/scanners are expensive. We propose the construction of a low cost scanner designed to capture multispectral images of documents. A standard sheet-feed scanner was modified by disconnecting its internal light source and connecting an external multispectral light source comprising of narrow band light emitting diodes (LED). A document was scanned by illuminating the scanner light guide successively with different LEDs and capturing a scan of the document. The system costs less than a hundred dollars and is portable. It can potentially be used for applications in verification of questioned documents, checks, receipts and bank notes.

7.
BMC Med Inform Decis Mak ; 19(1): 136, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31315618

ABSTRACT

BACKGROUND: With the advancement of powerful image processing and machine learning techniques, Computer Aided Diagnosis has become ever more prevalent in all fields of medicine including ophthalmology. These methods continue to provide reliable and standardized large scale screening of various image modalities to assist clinicians in identifying diseases. Since optic disc is the most important part of retinal fundus image for glaucoma detection, this paper proposes a two-stage framework that first detects and localizes optic disc and then classifies it into healthy or glaucomatous. METHODS: The first stage is based on Regions with Convolutional Neural Network (RCNN) and is responsible for localizing and extracting optic disc from a retinal fundus image while the second stage uses Deep Convolutional Neural Network to classify the extracted disc into healthy or glaucomatous. Unfortunately, none of the publicly available retinal fundus image datasets provides any bounding box ground truth required for disc localization. Therefore, in addition to the proposed solution, we also developed a rule-based semi-automatic ground truth generation method that provides necessary annotations for training RCNN based model for automated disc localization. RESULTS: The proposed method is evaluated on seven publicly available datasets for disc localization and on ORIGA dataset, which is the largest publicly available dataset with healthy and glaucoma labels, for glaucoma classification. The results of automatic localization mark new state-of-the-art on six datasets with accuracy reaching 100% on four of them. For glaucoma classification we achieved Area Under the Receiver Operating Characteristic Curve equal to 0.874 which is 2.7% relative improvement over the state-of-the-art results previously obtained for classification on ORIGA dataset. CONCLUSION: Once trained on carefully annotated data, Deep Learning based methods for optic disc detection and localization are not only robust, accurate and fully automated but also eliminates the need for dataset-dependent heuristic algorithms. Our empirical evaluation of glaucoma classification on ORIGA reveals that reporting only Area Under the Curve, for datasets with class imbalance and without pre-defined train and test splits, does not portray true picture of the classifier's performance and calls for additional performance metrics to substantiate the results.


Subject(s)
Deep Learning , Diagnosis, Computer-Assisted/methods , Fundus Oculi , Glaucoma/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Optic Disk/diagnostic imaging , Humans
8.
Sensors (Basel) ; 18(11)2018 Nov 10.
Article in English | MEDLINE | ID: mdl-30423837

ABSTRACT

In-air signature is a new modality which is essential for user authentication and access control in noncontact mode and has been actively studied in recent years. However, it has been treated as a conventional online signature, which is essentially a 2D spatial representation. Notably, this modality bears a lot more potential due to an important hidden depth feature. Existing methods for in-air signature verification neither capture this unique depth feature explicitly nor fully explore its potential in verification. Moreover, these methods are based on heuristic approaches for fingertip or hand palm center detection, which are not feasible in practice. Inspired by the great progress in deep-learning-based hand pose estimation, we propose a real-time in-air signature acquisition method which estimates hand joint positions in 3D using a single depth image. The predicted 3D position of fingertip is recorded for each frame. We present four different implementations of a verification module, which are based on the extracted depth and spatial features. An ablation study was performed to explore the impact of the depth feature in particular. For matching, we employed the most commonly used multidimensional dynamic time warping (MD-DTW) algorithm. We created a new database which contains 600 signatures recorded from 15 different subjects. Extensive evaluations were performed on our database. Our method, called 3DAirSig, achieved an equal error rate (EER) of 0 . 46 %. Experiments showed that depth itself is an important feature, which is sufficient for in-air signature verification. The dataset will be publicly available (https://goo.gl/yFdfdL).

9.
IEEE Trans Pattern Anal Mach Intell ; 40(7): 1584-1598, 2018 07.
Article in English | MEDLINE | ID: mdl-28708544

ABSTRACT

We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28 mm on synthetic faces and detected 14 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3 mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5 percent face recognition accuracy on the FRGCv2 and 98.6 percent on Bosphorus database. Our dense model is also able to generalize to unseen datasets.


Subject(s)
Biometric Identification/methods , Face/anatomy & histology , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Algorithms , Computer Simulation , Female , Humans , Male
10.
Springerplus ; 5(1): 2010, 2016.
Article in English | MEDLINE | ID: mdl-27942426

ABSTRACT

The recognition of Arabic script and its derivatives such as Urdu, Persian, Pashto etc. is a difficult task due to complexity of this script. Particularly, Urdu text recognition is more difficult due to its Nasta'liq writing style. Nasta'liq writing style inherits complex calligraphic nature, which presents major issues to recognition of Urdu text owing to diagonality in writing, high cursiveness, context sensitivity and overlapping of characters. Therefore, the work done for recognition of Arabic script cannot be directly applied to Urdu recognition. We present Multi-dimensional Long Short Term Memory (MDLSTM) Recurrent Neural Networks with an output layer designed for sequence labeling for recognition of printed Urdu text-lines written in the Nasta'liq writing style. Experiments show that MDLSTM attained a recognition accuracy of 98% for the unconstrained Urdu Nasta'liq printed text, which significantly outperforms the state-of-the-art techniques.

11.
IEEE Trans Pattern Anal Mach Intell ; 38(12): 2374-2388, 2016 12.
Article in English | MEDLINE | ID: mdl-26886965

ABSTRACT

We propose a Bayesian approach to learn discriminative dictionaries for sparse representation of data. The proposed approach infers probability distributions over the atoms of a discriminative dictionary using a finite approximation of Beta Process. It also computes sets of Bernoulli distributions that associate class labels to the learned dictionary atoms. This association signifies the selection probabilities of the dictionary atoms in the expansion of class-specific data. Furthermore, the non-parametric character of the proposed approach allows it to infer the correct size of the dictionary. We exploit the aforementioned Bernoulli distributions in separately learning a linear classifier. The classifier uses the same hierarchical Bayesian model as the dictionary, which we present along the analytical inference solution for Gibbs sampling. For classification, a test instance is first sparsely encoded over the learned dictionary and the codes are fed to the classifier. We performed experiments for face and action recognition; and object and scene-category classification using five public datasets and compared the results with state-of-the-art discriminative sparse representation approaches. Experiments show that the proposed Bayesian approach consistently outperforms the existing approaches.

12.
Proc Biol Sci ; 282(1816): 20151351, 2015 10 07.
Article in English | MEDLINE | ID: mdl-26400740

ABSTRACT

Prenatal testosterone may have a powerful masculinizing effect on postnatal physical characteristics. However, no study has directly tested this hypothesis. Here, we report a 20-year follow-up study that measured testosterone concentrations from the umbilical cord blood of 97 male and 86 female newborns, and procured three-dimensional facial images on these participants in adulthood (range: 21-24 years). Twenty-three Euclidean and geodesic distances were measured from the facial images and an algorithm identified a set of six distances that most effectively distinguished adult males from females. From these distances, a 'gender score' was calculated for each face, indicating the degree of masculinity or femininity. Higher cord testosterone levels were associated with masculinized facial features when males and females were analysed together (n = 183; r = -0.59), as well as when males (n = 86; r = -0.55) and females (n = 97; r = -0.48) were examined separately (p-values < 0.001). The relationships remained significant and substantial after adjusting for potentially confounding variables. Adult circulating testosterone concentrations were available for males but showed no statistically significant relationship with gendered facial morphology (n = 85, r = 0.01, p = 0.93). This study provides the first direct evidence of a link between prenatal testosterone exposure and human facial structure.


Subject(s)
Face/anatomy & histology , Fetal Blood/chemistry , Testosterone/metabolism , Female , Follow-Up Studies , Humans , Male , Pregnancy , Sex Characteristics , Western Australia , Young Adult
13.
IEEE Trans Image Process ; 24(12): 4934-42, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26316126

ABSTRACT

A sparse principal component analysis (PCA) seeks a sparse linear combination of input features (variables), so that the derived features still explain most of the variations in the data. A group sparse PCA introduces structural constraints on the features in seeking such a linear combination. Collectively, the derived principal components may still require measuring all the input features. We present a joint group sparse PCA (JGSPCA) algorithm, which forces the basic coefficients corresponding to a group of features to be jointly sparse. Joint sparsity ensures that the complete basis involves only a sparse set of input features, whereas the group sparsity ensures that the structural integrity of the features is maximally preserved. We evaluate the JGSPCA algorithm on the problems of compressed hyperspectral imaging and face recognition. Compressed sensing results show that the proposed method consistently outperforms sparse PCA and group sparse PCA in reconstructing the hyperspectral scenes of natural and man-made objects. The efficacy of the proposed compressed sensing method is further demonstrated in band selection for face recognition.

14.
Opt Express ; 23(12): 15160-73, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26193499

ABSTRACT

Over a decade ago, Pan et al. [IEEE TPAMI 25, 1552 (2003)] performed face recognition using only the spectral reflectance of the face at six points and reported around 95% recognition rate. Since their database is private, no one has been able to replicate these results. Moreover, due to the unavailability of public datasets, there has been no detailed study in the literature on the viability of facial spectral reflectance for person identification. In this study, we introduce a new public database of facial spectral reflectance profiles measured with a high precision spectrometer. For each of the 40 subjects, spectral reflectance was measured at the same six points as Pan et al. [IEEE TPAMI 25, 1552 (2003)] in multiple sessions and with time lapse. Furthermore, we sample the facial spectral reflectance from two public hyperspectral face image datasets and analyzed the data using state of the art face classification techniques. The best performing classifier achieved the maximum rank-1 identification rate of 53.8%. We conclude that facial spectral reflectance alone is not a reliable biometric for unconstrained face recognition.

15.
J Neurodev Disord ; 7(1): 14, 2015.
Article in English | MEDLINE | ID: mdl-25901187

ABSTRACT

BACKGROUND: In a recent study, Bejerot et al. observed that several physical features (including faces) of individuals with an autism spectrum disorder (ASD) were more androgynous than those of their typically developed counterparts, suggesting that ASD may be understood as a 'gender defiant' disorder. These findings are difficult to reconcile with the hypermasculinisation account, which proposes that ASD may be an exaggerated form of cognitive and biological masculinity. The current study extended these data by first identifying six facial features that best distinguished males and females from the general population and then examining these features in typically developing groups selected for high and low levels of autistic-like traits. METHODS: In study 1, three-dimensional (3D) facial images were collected from 208 young adult males and females recruited from the general population. Twenty-three facial distances were measured from these images and a gender classification and scoring algorithm was employed to identify a set of six facial features that most effectively distinguished male from female faces. In study 2, measurements of these six features were compared for groups of young adults selected for high (n = 46) or low (n = 66) levels of autistic-like traits. RESULTS: For each sex, four of the six sexually dimorphic facial distances significantly differentiated participants with high levels of autistic-like traits from those with low trait levels. All four features were less masculinised for high-trait males compared to low-trait males. Three of four features were less feminised for high-trait females compared to low-trait females. One feature was, however, not consistent with the general pattern of findings and was more feminised among females who reported more autistic-like traits. Based on the four significantly different facial distances for each sex, discriminant function analysis correctly classified 89.7% of the males and 88.9% of the females into their respective high- and low-trait groups. CONCLUSIONS: The current data provide support for Bejerot et al.'s androgyny account since males and females with high levels of autistic-like traits generally showed less sex-typical facial features than individuals with low levels of autistic-like traits.

16.
PLoS One ; 9(12): e114539, 2014.
Article in English | MEDLINE | ID: mdl-25494196

ABSTRACT

This paper evaluates the degree of saliency of texts in natural scenes using visual saliency models. A large scale scene image database with pixel level ground truth is created for this purpose. Using this scene image database and five state-of-the-art models, visual saliency maps that represent the degree of saliency of the objects are calculated. The receiver operating characteristic curve is employed in order to evaluate the saliency of scene texts, which is calculated by visual saliency models. A visualization of the distribution of scene texts and non-texts in the space constructed by three kinds of saliency maps, which are calculated using Itti's visual saliency model with intensity, color and orientation features, is given. This visualization of distribution indicates that text characters are more salient than their non-text neighbors, and can be captured from the background. Therefore, scene texts can be extracted from the scene images. With this in mind, a new visual saliency architecture, named hierarchical visual saliency model, is proposed. Hierarchical visual saliency model is based on Itti's model and consists of two stages. In the first stage, Itti's model is used to calculate the saliency map, and Otsu's global thresholding algorithm is applied to extract the salient region that we are interested in. In the second stage, Itti's model is applied to the salient region to calculate the final saliency map. An experimental evaluation demonstrates that the proposed model outperforms Itti's model in terms of captured scene texts.


Subject(s)
Cognition/physiology , Models, Theoretical , Visual Perception/physiology , Algorithms , Humans , Reading , Writing
17.
PLoS One ; 9(6): e99483, 2014.
Article in English | MEDLINE | ID: mdl-24923319

ABSTRACT

Gender score is the cognitive judgement of the degree of masculinity or femininity of a face which is considered to be a continuum. Gender scores have long been used in psychological studies to understand the complex psychosocial relationships between people. Perceptual scores for gender and attractiveness have been employed for quality assessment and planning of cosmetic facial surgery. Various neurological disorders have been linked to the facial structure in general and the facial gender perception in particular. While, subjective gender scoring by human raters has been a tool of choice for psychological studies for many years, the process is both time and resource consuming. In this study, we investigate the geometric features used by the human cognitive system in perceiving the degree of masculinity/femininity of a 3D face. We then propose a mathematical model that can mimic the human gender perception. For our experiments, we obtained 3D face scans of 64 subjects using the 3dMDface scanner. The textureless 3D face scans of the subjects were then observed in different poses and assigned a gender score by 75 raters of a similar background. Our results suggest that the human cognitive system employs a combination of Euclidean and geodesic distances between biologically significant landmarks of the face for gender scoring. We propose a mathematical model that is able to automatically assign an objective gender score to a 3D face with a correlation of up to 0.895 with the human subjective scores.


Subject(s)
Face/anatomy & histology , Perception/physiology , Sex Characteristics , Adolescent , Algorithms , Discriminant Analysis , Female , Humans , Male , Models, Theoretical , Young Adult
18.
IEEE Trans Pattern Anal Mach Intell ; 33(4): 846-51, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21330690

ABSTRACT

Projection methods have been used in the analysis of bitonal document images for different tasks such as page segmentation and skew correction for more than two decades. However, these algorithms are sensitive to the presence of border noise in document images. Border noise can appear along the page border due to scanning or photocopying. Over the years, several page segmentation algorithms have been proposed in the literature. Some of these algorithms have come into widespread use due to their high accuracy and robustness with respect to border noise. This paper addresses two important questions in this context: 1) Can existing border noise removal algorithms clean up document images to a degree required by projection methods to achieve competitive performance? 2) Can projection methods reach the performance of other state-of-the-art page segmentation algorithms (e.g., Docstrum or Voronoi) for documents where border noise has successfully been removed? We perform extensive experiments on the University of Washington (UW-III) data set with six border noise removal methods. Our results show that although projection methods can achieve the accuracy of other state-of-the-art algorithms on the cleaned document images, existing border noise removal techniques cannot clean up documents captured under a variety of scanning conditions to the degree required to achieve that accuracy.


Subject(s)
Algorithms , Image Enhancement/methods , Pattern Recognition, Automated/methods , Image Processing, Computer-Assisted/methods
19.
IEEE Trans Pattern Anal Mach Intell ; 30(6): 941-54, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18421102

ABSTRACT

Informative benchmarks are crucial for optimizing the page segmentation step of an OCR system, frequently the performance limiting step for overall OCR system performance. We show that current evaluation scores are insufficient for diagnosing specific errors in page segmentation and fail to identify some classes of serious segmentation errors altogether. This paper introduces a vectorial score that is sensitive to, and identifies, the most important classes of segmentation errors (over-, under-, and mis-segmentation) and what page components (lines, blocks, etc.) are affected. Unlike previous schemes, our evaluation method has a canonical representation of ground truth data and guarantees pixel-accurate evaluation results for arbitrary region shapes. We present the results of evaluating widely used segmentation algorithms (x-y cut, smearing, whitespace analysis, constrained text-line finding, docstrum, and Voronoi) on the UW-III database and demonstrate that the new evaluation scheme permits the identification of several specific flaws in individual segmentation methods.


Subject(s)
Algorithms , Artificial Intelligence , Documentation/methods , Electronic Data Processing/methods , Image Interpretation, Computer-Assisted/methods , Information Storage and Retrieval/methods , Pattern Recognition, Automated/methods , Benchmarking , Computer Graphics , Image Enhancement/methods , Models, Statistical , Numerical Analysis, Computer-Assisted , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted , Subtraction Technique , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...