Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Mov Disord ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38817039

ABSTRACT

Cerebrovascular activity is not only crucial to optimal cerebral perfusion, but also plays an important role in the glymphatic clearance of interstitial waste, including α-synuclein. This highlights a need to evaluate how cerebrovascular activity is altered in Lewy body diseases. This review begins by discussing how vascular risk factors and cardiovascular autonomic dysfunction may serve as upstream or direct influences on cerebrovascular activity. We then discuss how patients with Lewy body disease exhibit reduced and delayed cerebrovascular activity, hypoperfusion, and reductions in measures used to capture cerebrospinal fluid flow, suggestive of a reduced capacity for glymphatic clearance. Given the lack of an existing framework, we propose a model by which these processes may foster α-synuclein aggregation and neuroinflammation. Importantly, this review highlights several avenues for future research that may lead to treatments early in the disease course, prior to neurodegeneration. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Brain Commun ; 5(6): fcad288, 2023.
Article in English | MEDLINE | ID: mdl-37953849

ABSTRACT

Apraxia of eyelid opening (or eye-opening apraxia) is characterized by the inability to voluntarily open the eyes because of impaired supranuclear control. Here, we examined the neural substrates implicated in eye-opening apraxia through lesion network mapping. We analysed brain lesions from 27 eye-opening apraxia stroke patients and compared them with lesions from 20 aphasia and 45 hemiballismus patients serving as controls. Lesions were mapped onto a standard brain atlas using resting-state functional MRI data derived from 966 healthy adults in the Harvard Dataverse. Our analyses revealed that most eye-opening apraxia-associated lesions occurred in the right hemisphere, with subcortical or mixed cortical/subcortical involvement. Despite their anatomical heterogeneity, these lesions functionally converged on the bilateral dorsal anterior and posterior insula. The functional connectivity map for eye-opening apraxia was distinct from those for aphasia and hemiballismus. Hemiballismus lesions predominantly mapped onto the putamen, particularly the posterolateral region, while aphasia lesions were localized to language-processing regions, primarily within the frontal operculum. In summary, in patients with eye-opening apraxia, disruptions in the dorsal anterior and posterior insula may compromise their capacity to initiate the appropriate eyelid-opening response to relevant interoceptive and exteroceptive stimuli, implicating a complex interplay between salience detection and motor execution.

3.
J Int Neuropsychol Soc ; 28(7): 687-699, 2022 08.
Article in English | MEDLINE | ID: mdl-34376268

ABSTRACT

OBJECTIVE: Retrospective self-report is typically used for diagnosing previous pediatric traumatic brain injury (TBI). A new semi-structured interview instrument (New Mexico Assessment of Pediatric TBI; NewMAP TBI) investigated test-retest reliability for TBI characteristics in both the TBI that qualified for study inclusion and for lifetime history of TBI. METHOD: One-hundred and eight-four mTBI (aged 8-18), 156 matched healthy controls (HC), and their parents completed the NewMAP TBI within 11 days (subacute; SA) and 4 months (early chronic; EC) of injury, with a subset returning at 1 year (late chronic; LC). RESULTS: The test-retest reliability of common TBI characteristics [loss of consciousness (LOC), post-traumatic amnesia (PTA), retrograde amnesia, confusion/disorientation] and post-concussion symptoms (PCS) were examined across study visits. Aside from PTA, binary reporting (present/absent) for all TBI characteristics exhibited acceptable (≥0.60) test-retest reliability for both Qualifying and Remote TBIs across all three visits. In contrast, reliability for continuous data (exact duration) was generally unacceptable, with LOC and PCS meeting acceptable criteria at only half of the assessments. Transforming continuous self-report ratings into discrete categories based on injury severity resulted in acceptable reliability. Reliability was not strongly affected by the parent completing the NewMAP TBI. CONCLUSIONS: Categorical reporting of TBI characteristics in children and adolescents can aid clinicians in retrospectively obtaining reliable estimates of TBI severity up to a year post-injury. However, test-retest reliability is strongly impacted by the initial data distribution, selected statistical methods, and potentially by patient difficulty in distinguishing among conceptually similar medical concepts (i.e., PTA vs. confusion).


Subject(s)
Brain Injuries, Traumatic , Post-Concussion Syndrome , Adolescent , Amnesia, Retrograde , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnosis , Child , Confusion , Humans , Reproducibility of Results , Retrospective Studies
4.
Clin Epigenetics ; 13(1): 140, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34247653

ABSTRACT

BACKGROUND: Major depression has been recognized as the most commonly diagnosed psychiatric complication of mild traumatic brain injury (mTBI). Moreover, major depression is associated with poor outcomes following mTBI; however, the underlying biological mechanisms of this are largely unknown. Recently, genomic and epigenetic factors have been increasingly implicated in the recovery following TBI. RESULTS: This study leveraged DNA methylation within the major depression pathway, along with demographic and behavior measures (features used in the clinical model) to predict post-concussive symptom burden and quality of life four-month post-injury in a cohort of 110 pediatric mTBI patients and 87 age-matched healthy controls. The results demonstrated that including DNA methylation markers in the major depression pathway improved the prediction accuracy for quality of life but not persistent post-concussive symptom burden. Specifically, the prediction accuracy (i.e., the correlation between the predicted value and observed value) of quality of life was improved from 0.59 (p = 1.20 × 10-3) (clinical model) to 0.71 (p = 3.89 × 10-5); the identified cytosine-phosphate-guanine sites were mainly in the open sea regions and the mapped genes were related to TBI in several molecular studies. Moreover, depression symptoms were a strong predictor (with large weights) for both post-concussive symptom burden and pediatric quality of life. CONCLUSION: This study emphasized that both molecular and behavioral manifestations of depression symptoms played a prominent role in predicting the recovery process following pediatric mTBI, suggesting the urgent need to further study TBI-caused depression symptoms for better recovery outcome.


Subject(s)
Brain Concussion/complications , Depressive Disorder, Major/etiology , Quality of Life/psychology , Adolescent , Brain Concussion/epidemiology , Brain Concussion/genetics , Child , Cohort Studies , DNA Methylation/genetics , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/psychology , Female , Humans , Male , Switzerland/epidemiology
5.
Schizophr Res ; 229: 12-21, 2021 03.
Article in English | MEDLINE | ID: mdl-33607607

ABSTRACT

Patients with psychotic spectrum disorders (PSD) exhibit similar patterns of atrophy and microstructural changes that may be associated with common symptomatology (e.g., symptom burden and/or cognitive impairment). Gray matter concentration values (proxy for atrophy), fractional anisotropy (FA), mean diffusivity (MD), intracellular neurite density (Vic) and isotropic diffusion volume (Viso) measures were therefore compared in 150 PSD (schizophrenia, schizoaffective disorder, and bipolar disorder Type I) and 63 healthy controls (HC). Additional analyses evaluated whether regions showing atrophy and/or microstructure abnormalities were better explained by DSM diagnoses, symptom burden or cognitive dysfunction. PSD exhibited increased atrophy within bilateral medial temporal lobes and subcortical structures. Gray matter along the left lateral sulcus showed evidence of increased atrophy and MD. Increased MD was also observed in homotopic fronto-temporal regions, suggesting it may serve as a precursor to atrophic changes. Global cognitive dysfunction, rather than DSM diagnoses or psychotic symptom burden, was the best predictor of increased gray matter MD. Regions of decreased FA (i.e., left frontal gray and white matter) and Vic (i.e., frontal and temporal regions and along central sulcus) were also observed for PSD, but were neither spatially concurrent with atrophic regions nor associated with clinical symptoms. Evidence of expanding microstructural spaces in gray matter demonstrated the greatest spatial overlap with current and potentially future regions of atrophy, and was associated with cognitive deficits. These results suggest that this particular structural abnormality could potentially underlie global cognitive impairment that spans traditional diagnostic categories.


Subject(s)
Psychotic Disorders , White Matter , Atrophy , Brain/diagnostic imaging , Brain/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/pathology , White Matter/diagnostic imaging , White Matter/pathology
6.
J Int Neuropsychol Soc ; 27(7): 686-696, 2021 08.
Article in English | MEDLINE | ID: mdl-33243310

ABSTRACT

OBJECTIVE: This study aimed to examine the predictors of cognitive performance in patients with pediatric mild traumatic brain injury (pmTBI) and to determine whether group differences in cognitive performance on a computerized test battery could be observed between pmTBI patients and healthy controls (HC) in the sub-acute (SA) and the early chronic (EC) phases of injury. METHOD: 203 pmTBI patients recruited from emergency settings and 159 age- and sex-matched HC aged 8-18 rated their ongoing post-concussive symptoms (PCS) on the Post-Concussion Symptom Inventory and completed the Cogstate brief battery in the SA (1-11 days) phase of injury. A subset (156 pmTBI patients; 144 HC) completed testing in the EC (~4 months) phase. RESULTS: Within the SA phase, a group difference was only observed for the visual learning task (One-Card Learning), with pmTBI patients being less accurate relative to HC. Follow-up analyses indicated higher ongoing PCS and higher 5P clinical risk scores were significant predictors of lower One-Card Learning accuracy within SA phase, while premorbid variables (estimates of intellectual functioning, parental education, and presence of learning disabilities or attention-deficit/hyperactivity disorder) were not. CONCLUSIONS: The absence of group differences at EC phase is supportive of cognitive recovery by 4 months post-injury. While the severity of ongoing PCS and the 5P score were better overall predictors of cognitive performance on the Cogstate at SA relative to premorbid variables, the full regression model explained only 4.1% of the variance, highlighting the need for future work on predictors of cognitive outcomes.


Subject(s)
Brain Concussion , Learning Disabilities , Post-Concussion Syndrome , Brain Concussion/complications , Child , Cognition , Humans , Learning Disabilities/diagnosis , Learning Disabilities/etiology , Longitudinal Studies , Neuropsychological Tests , Post-Concussion Syndrome/diagnosis , Post-Concussion Syndrome/etiology
7.
J Psychiatry Neurosci ; 45(6): 430-440, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32869961

ABSTRACT

Background: Functional underpinnings of cognitive control deficits in unbiased samples (i.e., all comers) of patients with psychotic spectrum disorders (PSD) remain actively debated. While many studies suggest hypofrontality in the lateral prefrontal cortex (PFC) and greater deficits during proactive relative to reactive control, few have examined the full hemodynamic response. Methods: Patients with PSD (n = 154) and healthy controls (n = 65) performed the AX continuous performance task (AX-CPT) during rapid (460 ms) functional neuroimaging and underwent full clinical characterization. Results: Behavioural results indicated generalized cognitive deficits (slower and less accurate) across proactive and reactive control conditions in patients with PSD relative to healthy controls. We observed a delayed/prolonged neural response in the left dorsolateral PFC, the sensorimotor cortex and the superior parietal lobe during proactive control for patients with PSD. These proactive hemodynamic abnormalities were better explained by negative rather than by positive symptoms or by traditional diagnoses according to the Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision (DSM-IV-TR), with subsequent simulations unequivocally demonstrating how these abnormalities could be erroneously interpreted as hypoactivation. Conversely, true hypoactivity, unassociated with clinical symptoms or DSM-IV-TR diagnoses, was observed within the ventrolateral PFC during reactive control. Limitations: In spite of guidance for AX-CPT use in neuroimaging studies, one-third of patients with PSD could not perform the task above chance and were more clinically impaired. Conclusion: Current findings question the utility of the AX-CPT for neuroimaging-based appraisal of cognitive control across the full spectrum of patients with PSD. Previously reported lateral PFC "hypoactivity" during proactive control may be more indicative of a delayed/prolonged neural response, important for rehabilitative purposes. Negative symptoms may better explain certain behavioural and hemodynamic abnormalities in patients with PSD relative to DSM-IV-TR diagnoses.


Subject(s)
Executive Function/physiology , Functional Neuroimaging/standards , Parietal Lobe/physiopathology , Prefrontal Cortex/physiopathology , Psychomotor Performance/physiology , Psychotic Disorders/physiopathology , Sensorimotor Cortex/physiopathology , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Parietal Lobe/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Psychotic Disorders/diagnostic imaging , Sensorimotor Cortex/diagnostic imaging , Young Adult
8.
J Magn Reson Imaging ; 52(6): 1701-1713, 2020 12.
Article in English | MEDLINE | ID: mdl-32592270

ABSTRACT

BACKGROUND: Physiological recovery from pediatric mild traumatic brain injury (pmTBI) as a function of age remains actively debated, with the majority of studies relying on subjective symptom report rather than objective markers of brain physiology. PURPOSE: To examine potential abnormalities in fractional amplitude of low-frequency fluctuations (fALFF) or regional homogeniety (ReHo) during resting-state fMRI following pmTBI. STUDY TYPE: Prospective cohort. POPULATION: Consecutively recruited pmTBI (N = 105; 8-18 years old) and age- and sex-matched healthy controls (HC; N = 113). FIELD STRENGTH/SEQUENCE: 3T multiecho gradient T1 -weighted and single-shot gradient-echo echo-planar imaging. ASSESSMENT: All pmTBI participants were assessed 1 week and 4 months postinjury (HC assessed at equivalent timepoints after the first visit). Comprehensive demographic, clinical, and cognitive batteries were performed in addition to primary investigation of fALFF and ReHo. All pmTBI were classified as "persistent" or "recovered" based on both assessment periods. STATISTICAL TESTS: Chi-square, nonparametric, and generalized linear models for demographic data. Generalized estimating equations for clinical and cognitive data. Voxelwise general linear models (AFNI's 3dMVM) for fALFF and ReHo assessment. RESULTS: Evidence of recovery was observed for some, but not all, clinical and cognitive measures at 4 months postinjury. fALFF was increased in the left striatum for pmTBI relative to HC both at 1 week and 4 months postinjury; whereas no significant group differences (P > 0.001) were observed for ReHo. Age-at-injury did not moderate either resting-state metric across groups. In contrast to analyses of pmTBI as a whole, there were no significant (P > 0.001) differences in either fALFF or ReHo in patients with persistent postconcussive symptoms compared to recovered patients and controls at 4 months postinjury. DATA CONCLUSIONS: Our findings suggest prolonged clinical recovery and alterations in the relative amplitude of resting-state fluctuations up to 4 months postinjury, but no clear relationship with age-at-injury or subjective symptom report. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: 2 J. MAGN. RESON. IMAGING 2020;52:1701-1713.


Subject(s)
Brain Concussion , Post-Concussion Syndrome , Adolescent , Brain/diagnostic imaging , Brain Concussion/diagnostic imaging , Child , Humans , Magnetic Resonance Imaging , Prospective Studies
9.
Cortex ; 129: 314-328, 2020 08.
Article in English | MEDLINE | ID: mdl-32554227

ABSTRACT

Sensorimotor synchronization (SMS) is frequently dependent on coordination of excitatory and inhibitory activity across hemispheres, as well as the cognitive control over environmental distractors. However, the timing (motor planning versus execution) and cortical regions involved in these processes remain actively debated. Functional magnetic resonance imaging data were therefore analyzed from 34 strongly right-handed healthy adults performing a cued (to initiate motor planning) SMS task with either their right or left hand (motor execution phase) based on spatially congruent or incongruent visual stimuli. Behavioral effects of incongruent stimuli were limited to the first stimulus. Functionally, greater activation was observed in left sensorimotor cortex (SMC) and right cerebellar Lobule V for congruent versus incongruent stimuli. A negative blood-oxygen level dependent response, a putative marker of neural inhibition, was present in bilateral SMC, right supplemental motor area (SMA) and bilateral cerebellar Lobule V during the motor planning, but not execution phase. The magnitude of the inhibitory response was greater in right cortical regions and cerebellar Lobule V. Homologue connectivity was associated with inhibitory activity in the right SMA, suggesting that individual differences in intrinsic connectivity may mediate transcallosal inhibition. In summary, results suggest increased inhibition (i.e., greater negative BOLD response) within the right relative to left hemisphere, which was released once motor programs were executed. Both task and intrinsic functional connectivity results highlight a critical role of the left SMA in interhemispheric inhibition and motor planning.


Subject(s)
Motor Cortex , Adult , Cerebellum , Cues , Hand , Humans , Magnetic Resonance Imaging , Psychomotor Performance
10.
J Head Trauma Rehabil ; 35(4): 270-278, 2020.
Article in English | MEDLINE | ID: mdl-32108710

ABSTRACT

OBJECTIVE: To evaluate diagnostic/prognostic implications of neurosensory testing during the subacute stage in patients with pediatric mild traumatic brain injury (pmTBI). SETTING: Recruitment from pediatric emergency department and urgent care clinics, assessment in a controlled environment. PARTICIPANTS: In total, 146 pmTBI patients evaluated 7.4 ± 2.3 days and approximately 4 months postinjury; 104 age/sex-matched healthy controls (HCs) at equivalent time points. DESIGN: Prospective cohort study. MAIN MEASURES: Neurosensory examination based on sequence of 10 established tests of vestibular-ocular, oculomotor, vestibulospinal, and visual functioning. RESULTS: The amount of symptom provocation (positive change from pretest symptomatology) was significantly increased in pmTBI relative to HCs on every subtest 1 week postinjury, as were deficits in monocular accommodative amplitude and King-Devick Test errors. However, symptom provocation did not meaningfully alter diagnostic sensitivity/specificity relative to more easily obtained pretest symptom ratings. Evidence of clinically significant symptom provocation 1 week postinjury improved sensitivity (Δ = +12.9%) of identifying patients with persistent postconcussive symptoms 4 months postinjury on an independent symptom measure. CONCLUSIONS: The diagnostic sensitivity/specificity of neurosensory testing in acutely concussed youth may be limited at 1 week postinjury as a function of natural recovery occurring in most emergency department cohorts. Neurosensory screening may have greater utility for identifying patients who experience delayed recovery.


Subject(s)
Brain Concussion , Post-Concussion Syndrome , Adolescent , Brain Concussion/complications , Brain Concussion/diagnosis , Emergency Service, Hospital , Female , Humans , Male , Post-Concussion Syndrome/diagnosis , Prospective Studies , Quality of Life
11.
J Neurotrauma ; 37(13): 1504-1511, 2020 07 01.
Article in English | MEDLINE | ID: mdl-31964232

ABSTRACT

Pediatric mild traumatic brain injury (pmTBI) has received increased public scrutiny over the past decade, especially regarding children who experience persistent post-concussive symptoms (PPCS). However, several methods for defining PPCS exist in clinical and scientific literature, and even healthy children frequently exhibit non-specific, concussive-like symptoms. Inter-method agreement (six PPCS methods), observed misclassification rates, and other psychometric properties were examined in large cohorts of consecutively recruited adolescent patients with pmTBI (n = 162) 1 week and 4 months post-injury and in age/sex-matched healthy controls (HC; n = 117) at equivalent time intervals. Six published PPCS methods were stratified into Simple Change (e.g., International Statistical Classification of Diseases and Related Health Problems, 10th revision [ICD-10]) and Standardized Change (e.g., reliable change indices) algorithms. Among HC, test-retest reliability was fair to good across the 4-month assessment window, with evidence of bias (i.e., higher symptom ratings) during retrospective relative to other assessments. Misclassification rates among HC were higher (>30%) for Simple Change algorithms, with poor inter-rater reliability of symptom burden across HC and their parents. A 49% spread existed in terms of the proportion of pmTBI patients "diagnosed" with PPCS at 4 months, with superior inter-method agreement among standardized change algorithms. In conclusion, the self-reporting of symptom burden is only modestly reliable in typically developing adolescents over a 4-month period, with additional evidence for systematic bias in both adolescent and parental ratings. Significant variation existed for identifying pmTBI patients who had "recovered" (i.e., those who did not meet individual criteria for PPCS) from concussion across the six definitions, representing a considerable challenge for estimating the true incidence rate of PPCS in published literature. Although relatively straightforward to obtain, current findings question the utility of the most commonly used Simple Change scores for diagnosis of PPCS in clinical settings.


Subject(s)
Brain Concussion/classification , Brain Concussion/diagnosis , Neuropsychological Tests/standards , Post-Concussion Syndrome/classification , Post-Concussion Syndrome/diagnosis , Adolescent , Age Factors , Brain Concussion/psychology , Child , Female , Follow-Up Studies , Humans , Male , Observer Variation , Post-Concussion Syndrome/psychology , Retrospective Studies , Sex Factors
12.
J Cereb Blood Flow Metab ; 40(12): 2491-2504, 2020 12.
Article in English | MEDLINE | ID: mdl-31903838

ABSTRACT

Much attention has been paid to the effects of mild traumatic brain injury (mTBI) on cerebrovascular reactivity in adult populations, yet it remains understudied in pediatric injury. In this study, 30 adolescents (12-18 years old) with pediatric mTBI (pmTBI) and 35 age- and sex-matched healthy controls (HC) underwent clinical and neuroimaging assessments during sub-acute (6.9 ± 2.2 days) and early chronic (120.4 ± 11.7 days) phases of injury. Relative to controls, pmTBI reported greater initial post-concussion symptoms, headache, pain, and anxiety, resolving by four months post-injury. Patients reported increased sleep issues and exhibited deficits in processing speed and attention across both visits. In grey-white matter interface areas throughout the brain, pmTBI displayed increased maximal fit/amplitude of a time-shifted end-tidal CO2 regressor to blood oxygen-level dependent response relative to HC, as well as increased latency to maximal fit. The alterations persisted through the early chronic phase of injury, with maximal fit being associated with complaints of ongoing sleep disturbances during post hoc analyses but not cognitive measures of processing speed or attention. Collectively, these findings suggest that deficits in the speed and degree of cerebrovascular reactivity may persist longer than current conceptualizations about clinical recovery within 30 days.


Subject(s)
Brain Concussion/physiopathology , Carbon Dioxide/metabolism , Hypercapnia/blood , Neuroimaging/methods , Adolescent , Anxiety/epidemiology , Brain Concussion/complications , Brain Concussion/metabolism , Carbon Dioxide/blood , Case-Control Studies , Cerebrovascular Circulation/physiology , Child , Female , Gray Matter/blood supply , Gray Matter/diagnostic imaging , Gray Matter/metabolism , Headache/epidemiology , Humans , Hypercapnia/complications , Hypercapnia/physiopathology , Male , Pain/epidemiology , Post-Concussion Syndrome/diagnosis , Post-Concussion Syndrome/epidemiology , Prospective Studies , Sleep Wake Disorders/epidemiology , White Matter/blood supply , White Matter/diagnostic imaging , White Matter/metabolism
13.
Neurology ; 94(3): e241-e253, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31645467

ABSTRACT

OBJECTIVE: The nosology for classifying structural MRI findings following pediatric mild traumatic brain injury (pmTBI) remains actively debated. Radiologic common data elements (rCDE) were developed to standardize reporting in research settings. However, some rCDE are more specific to trauma (probable rCDE). Other more recently proposed rCDE have multiple etiologies (possible rCDE), and may therefore be more common in all children. Independent cohorts of patients with pmTBI and controls were therefore recruited from multiple sites (New Mexico and Ohio) to test the dual hypothesis of a higher incidence of probable rCDE (pmTBI > controls) vs similar rates of possible rCDE on structural MRI. METHODS: Patients with subacute pmTBI (n = 287), matched healthy controls (HC; n = 106), and orthopedically injured (OI; n = 71) patients underwent imaging approximately 1 week postinjury and were followed for 3-4 months. RESULTS: Probable rCDE were specific to pmTBI, occurring in 4%-5% of each sample, rates consistent with previous large-scale CT studies. In contrast, prevalence rates for incidental findings and possible rCDE were similar across groups (pmTBI vs OI vs HC). The prevalence of possible rCDE was also the only finding that varied as a function of site. Possible rCDE and incidental findings were not associated with postconcussive symptomatology or quality of life 3-4 months postinjury. CONCLUSION: Collectively, current findings question the trauma-related specificity of certain rCDE, as well how these rCDE are radiologically interpreted. Refinement of rCDE in the context of pmTBI may be warranted, especially as diagnostic schema are evolving to stratify patients with structural MRI abnormalities as having a moderate injury.


Subject(s)
Brain Concussion/classification , Brain Concussion/diagnostic imaging , Brain Concussion/pathology , Image Interpretation, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Adolescent , Child , Common Data Elements , Female , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male
14.
Hum Brain Mapp ; 40(18): 5370-5381, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31456319

ABSTRACT

Although much attention has been generated in popular media regarding the deleterious effects of pediatric mild traumatic brain injury (pmTBI), a paucity of empirical evidence exists regarding the natural course of biological recovery. Fifty pmTBI patients (12-18 years old) were consecutively recruited from Emergency Departments and seen approximately 1 week and 4 months post-injury in this prospective cohort study. Data from 53 sex- and age-matched healthy controls (HC) were also collected. Functional magnetic resonance imaging was obtained during proactive response inhibition and at rest, in conjunction with independent measures of resting cerebral blood flow. High temporal resolution imaging enabled separate modeling of neural responses for preparation and execution of proactive response inhibition. A priori predictions of failed inhibitory responses (i.e., hyperactivation) were observed in motor circuitry (pmTBI>HC) and sensory areas sub-acutely and at 4 months post-injury. Paradoxically, pmTBI demonstrated hypoactivation (HC>pmTBI) during target processing, along with decreased activation within prefrontal cognitive control areas. Functional connectivity within motor circuitry at rest suggested that deficits were limited to engagement during the inhibitory task, whereas normal resting cerebral perfusion ruled out deficits in basal perfusion. In conclusion, current results suggest blood oxygen-level dependent deficits during inhibitory control may exceed commonly held beliefs about physiological recovery following pmTBI, potentially lasting up to 4 months post-injury.


Subject(s)
Brain Concussion/diagnostic imaging , Brain Concussion/psychology , Cerebrovascular Circulation/physiology , Proactive Inhibition , Psychomotor Performance/physiology , Adolescent , Brain Concussion/physiopathology , Child , Female , Humans , Male , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology
15.
Hum Brain Mapp ; 40(13): 3843-3859, 2019 09.
Article in English | MEDLINE | ID: mdl-31119818

ABSTRACT

It has been known for decades that head motion/other artifacts affect the blood oxygen level-dependent signal. Recent recommendations predominantly focus on denoising resting state data, which may not apply to task data due to the different statistical relationships that exist between signal and noise sources. Several blind-source denoising strategies (FIX and AROMA) and more standard motion parameter (MP) regression (0, 12, or 24 parameters) analyses were therefore compared across four sets of event-related functional magnetic resonance imaging (erfMRI) and block-design (bdfMRI) datasets collected with multiband 32- (repetition time [TR] = 460 ms) or older 12-channel (TR = 2,000 ms) head coils. The amount of motion varied across coil designs and task types. Quality control plots indicated small to moderate relationships between head motion estimates and percent signal change in both signal and noise regions. Blind-source denoising strategies eliminated signal as well as noise relative to MP24 regression; however, the undesired effects on signal depended both on algorithm (FIX > AROMA) and design (bdfMRI > erfMRI). Moreover, in contrast to previous results, there were minimal differences between MP12/24 and MP0 pipelines in both erfMRI and bdfMRI designs. MP12/24 pipelines were detrimental for a task with both longer block length (30 ± 5 s) and higher correlations between head MPs and design matrix. In summary, current results suggest that there does not appear to be a single denoising approach that is appropriate for all fMRI designs. However, even nonaggressive blind-source denoising approaches appear to remove signal as well as noise from task-related data at individual subject and group levels.


Subject(s)
Artifacts , Brain/physiology , Functional Neuroimaging/methods , Head Movements , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adolescent , Adult , Brain/diagnostic imaging , Female , Functional Neuroimaging/standards , Humans , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Male , Pattern Recognition, Visual/physiology , Psychomotor Performance/physiology , Research Design , Young Adult
16.
Schizophr Res ; 208: 344-352, 2019 06.
Article in English | MEDLINE | ID: mdl-30711315

ABSTRACT

BACKGROUND: Patients with psychotic spectrum disorders share overlapping clinical/biological features, making it often difficult to separate them into a discrete nosology (i.e., Diagnostic and Statistical Manual of Mental Disorders [DSM]). METHODS: The current study investigated whether a continuum classification scheme based on symptom burden would improve conceptualizations for cognitive and real-world dysfunction relative to traditional DSM nosology. Two independent samples (New Mexico [NM] and Bipolar and Schizophrenia Network on Intermediate Phenotypes [B-SNIP]) of patients with schizophrenia (NM: N = 93; B-SNIP: N = 236), bipolar disorder Type I (NM: N = 42; B-SNIP: N = 195) or schizoaffective disorder (NM: N = 15; B-SNIP: N = 148) and matched healthy controls (NM: N = 64; B-SNIP: N = 717) were examined. Linear regressions examined how variance differed as a function of classification scheme (DSM diagnosis, negative and positive symptom burden, or a three-cluster solution based on symptom burden). RESULTS: Symptom-based classification schemes (continuous and clustered) accounted for a significantly larger portion of captured variance of real-world functioning relative to DSM diagnoses across both samples. The symptom-based classification schemes accounted for large percentages of variance for general cognitive ability and cognitive domains in the NM sample. However, in the B-SNIP sample, symptom-based classification schemes accounted for roughly equivalent variance as DSM diagnoses. A potential mediating variable across samples was the strength of the relationship between negative symptoms and impaired cognition. CONCLUSIONS: Current results support suggestions that a continuum perspective of psychopathology may be more powerful for explaining real-world functioning than the DSM diagnostic nosology, whereas results for cognitive dysfunction were sample dependent.


Subject(s)
Cognition Disorders/psychology , Emotional Intelligence , Psychotic Disorders/psychology , Symptom Assessment/psychology , Adolescent , Adult , Bipolar Disorder/classification , Bipolar Disorder/diagnosis , Bipolar Disorder/psychology , Cognition Disorders/classification , Cognition Disorders/diagnosis , Cost of Illness , Diagnostic and Statistical Manual of Mental Disorders , Emotional Intelligence/classification , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Phenotype , Psychiatric Status Rating Scales , Psychotic Disorders/classification , Psychotic Disorders/diagnosis , Symptom Assessment/classification , Young Adult
17.
Schizophr Bull ; 45(3): 552-561, 2019 04 25.
Article in English | MEDLINE | ID: mdl-29939338

ABSTRACT

Inhibitory failure represents a core dysfunction in patients with schizophrenia (SP), which has predominantly been tested in the literature using reactive (ie, altering behavior after a stimulus) rather than proactive (ie, purposefully changing behavior before a stimulus) response inhibition tasks. The current study replicates/extends our previous findings of SP exhibiting sensorimotor cortex (SMC) hyperactivity and connectivity abnormalities in independent samples of patients and controls. Specifically, 49 clinically well-characterized SP and 54 matched healthy controls (HC) performed a proactive response inhibition task while undergoing functional magnetic resonance imaging and resting-state data collection. Results indicated that the majority of SP (84%) and HC (88%) successfully inhibited all overt motor responses following a cue, eliminating behavioral confounds frequently present in this population. Observations of left SMC hyperactivity during proactive response inhibition, reduced cortical connectivity with left SMC, and increased connectivity between left SMC and ventrolateral thalamus were replicated for SP relative to HC in the current study. Similarly, negative symptoms (eg, motor retardation) were again associated with SMC functional and connectivity abnormalities. In contrast, findings of a negative blood oxygenation level-dependent response in the SMC of HC did not replicate. Collectively, current and previous findings suggest that SMC connectivity abnormalities may be more robust relative to evoked hemodynamic signals during proactive response inhibition. In addition, there is strong support that these SMC abnormalities are a key component of SP pathology, along with dysfunction within other sensory cortices, and may be associated with certain clinical deficits such as negative symptoms.


Subject(s)
Attention/physiology , Brain/physiopathology , Connectome , Nerve Net/physiopathology , Proactive Inhibition , Psychomotor Performance/physiology , Schizophrenia/physiopathology , Sensorimotor Cortex/physiopathology , Adult , Brain/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Schizophrenia/diagnostic imaging , Sensorimotor Cortex/diagnostic imaging , Young Adult
18.
Hum Brain Mapp ; 40(3): 955-966, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30407681

ABSTRACT

The role of ventral versus dorsolateral prefrontal regions in instantiating proactive and reactive cognitive control remains actively debated, with few studies parsing cue versus probe-related activity. Rapid sampling (460 ms), long cue-probe delays, and advanced analytic techniques (deconvolution) were therefore used to quantify the magnitude and variability of neural responses during the AX Continuous Performance Test (AX-CPT; N = 46) in humans. Behavioral results indicated slower reaction times during reactive cognitive control (AY trials) in conjunction with decreased accuracy and increased variability for proactive cognitive control (BX trials). The anterior insula/ventrolateral prefrontal cortex (aI/VLPFC) was commonly activated across comparisons of both proactive and reactive cognitive control. In contrast, activity within the dorsomedial and dorsolateral prefrontal cortex was limited to reactive cognitive control. The instantiation of proactive cognitive control during the probe period was also associated with sparse neural activation relative to baseline, potentially as a result of the high degree of neural and behavioral variability observed across individuals. Specifically, the variability of the hemodynamic response function (HRF) within motor circuitry increased after the presentation of B relative to A cues (i.e., late in HRF) and persisted throughout the B probe period. Finally, increased activation of right aI/VLPFC during the cue period was associated with decreased motor circuit activity during BX probes, suggesting a possible role for the aI/VLPFC in proactive suppression of neural responses. Considered collectively, current results highlight the flexible role of the VLPFC in implementing cognitive control during the AX-CPT task but suggest large individual differences in proactive cognitive control strategies.


Subject(s)
Cognition/physiology , Prefrontal Cortex/physiology , Reaction Time/physiology , Adult , Echo-Planar Imaging/methods , Female , Humans , Male
19.
Neurosci Biobehav Rev ; 94: 149-165, 2018 11.
Article in English | MEDLINE | ID: mdl-30098989

ABSTRACT

There is growing public concern about neurodegenerative changes (e.g., Chronic Traumatic Encephalopathy) that may occur chronically following clinically apparent and clinically silent (i.e., sub-concussive blows) pediatric mild traumatic brain injury (pmTBI). However, there are currently no biomarkers that clinicians can use to objectively diagnose patients or predict those who may struggle to recover. Non-invasive neuroimaging, electrophysiological and neuromodulation biomarkers have promise for providing evidence of the so-called "invisible wounds" of pmTBI. Our systematic review, however, belies that notion, identifying a relative paucity of high-quality, clinically impactful, diagnostic or prognostic biomarker studies in the sub-acute injury phase (36 studies on unique samples in 28 years), with the majority focusing on adolescent pmTBI. Ultimately, well-powered longitudinal studies with appropriate control groups, as well as standardized and clearly-defined inclusion criteria (time post-injury, injury severity and past history) are needed to truly understand the complex pathophysiology that is hypothesized (i.e., still needs to be determined) to exist during the acute and sub-acute stages of pmTBI and may underlie post-concussive symptoms.


Subject(s)
Brain Concussion/diagnostic imaging , Brain Concussion/metabolism , Animals , Biomarkers/metabolism , Child , Humans , Meta-Analysis as Topic
20.
Biol Psychiatry ; 84(9): 675-683, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29921417

ABSTRACT

BACKGROUND: Disrupted proactive cognitive control, a form of early selection and active goal maintenance, is hypothesized to underlie the broad cognitive deficits observed in patients with schizophrenia (SPs). Current research suggests that the disrupted activation within and connectivity between regions of the cognitive control network contribute to disrupted proactive cognitive control; however, no study has examined these mechanisms using an AX Continuous Performance Test task in schizophrenia. METHODS: Twenty-six SPs (17 male subjects; mean age 34.46 ± 8.77 years) and 28 healthy control participants (HCs; 16 male subjects; mean age 31.43 ± 7.23 years) underwent an electroencephalogram while performing the AX Continuous Performance Test. To examine the extent of activation and level of connectivity within the cognitive control network, power, intertrial phase clustering, and intersite phase clustering metrics were calculated and analyzed. RESULTS: SPs exhibited expected general decrements in behavioral performance relative to HCs and a more selective deficit in conditions requiring proactive cognitive control. Additionally, SPs exhibited deficits in midline theta power and connectivity during proactive cognitive control trials. Specifically, HCs exhibited significantly greater theta power for B cues relative to A cues, whereas SPs exhibited no significant differences between A- and B-cue theta power. Additionally, differential theta connectivity patterns were observed in SPs and HCs. Behavioral measures of proactive cognitive control predicted functional outcomes in SPs. CONCLUSIONS: This study suggests that low-frequency midline theta activity is selectively disrupted during proactive cognitive control in SPs. The disrupted midline theta activity may reflect a failure of SPs to proactively recruit cognitive control processes.


Subject(s)
Cognition/physiology , Frontal Lobe/physiopathology , Schizophrenia/physiopathology , Theta Rhythm/physiology , Adult , Case-Control Studies , Cues , Electroencephalography , Female , Humans , Male , Neuropsychological Tests , Reaction Time , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...