Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Elife ; 132024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913421

ABSTRACT

Background: Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB. Methods: Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations. Results: Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB. Conclusions: The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes. Funding: This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.


Human pregnancies last 40 weeks on average. Preterm births, defined as live births before 37 weeks, occur in about one in ten pregnancies. Being born too early is the main cause of a number of diseases and death in newborn babies. Preterm births are further divided into those that happen early ­ before 34 weeks ­ and those that happen late ­ between 34 and 37 weeks. There are also differences between preterm births in which the amniotic sac ruptures before or after the start of labor. Although several factors can lead to spontaneous preterm birth, bacteria getting into the amniotic fluid around the fetus are a well-known trigger. These bacteria usually come from the vagina. In the past, researchers have studied the number and types of bacteria in the vagina of people who had a normal pregnancy and those that had a preterm birth to predict who is more at risk of preterm birth. However, predictions based only on data about bacteria have been less useful so far. Instead, it might be better to investigate a person's immune response during pregnancy. Shaffer et al. addressed this gap by asking whether measuring the levels of proteins involved in the immune response could help predict preterm births. Shaffer et al. collected vaginal fluids from 739 individuals of predominately African American ethnicity with an average BMI of 28.7 ­ representing a population at high risk for spontaneous preterm birth. The swabs were taken at multiple points during their pregnancy, and 31 different immune-related proteins in those fluids were measured. The researchers further noted whether these individuals had a normal or a preterm birth. The data showed that, compared to normal births, preterm births are associated with higher levels of proteins that attract white blood cells and promote inflammation, such as IL-6 and IL-1ß. Vaginal fluids from individuals who went on to have an early preterm birth where the amniotic sac ruptured before labor, contained lower levels of proteins known as defensins, which defend the body from bacteria. With these new data from vaginal swabs, Shaffer et al. could make better predictions about the likelihood of preterm birth in general and early preterm birth with the amniotic sac ruptured before labor. For the latter scenario, the predictions were not improved when combining immune protein data with other characteristics of the pregnant person, such as age. These findings suggest that clinicians may be able to use measurements of immune-related proteins to help predict preterm births, so that pregnant individuals at high risk can receive extra care. Further research will have to validate the data and determine whether the findings apply more widely.


Subject(s)
Premature Birth , Vagina , Humans , Female , Longitudinal Studies , Pregnancy , Vagina/immunology , Premature Birth/immunology , Adult , Retrospective Studies , Proteome , Cytokines/metabolism , Fetal Membranes, Premature Rupture/immunology , Fetal Membranes, Premature Rupture/diagnosis , Young Adult , Immunoproteins
2.
Sci Rep ; 13(1): 13754, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612353

ABSTRACT

Cocaine is a highly addictive psychostimulant drug of abuse that constitutes an ongoing public health threat. Emerging research is revealing that numerous peripheral effects of this drug may serve as conditioned stimuli for its central reinforcing properties. The gut microbiota is emerging as one of these peripheral sources of input to cocaine reward. The primary objective of the present study was to determine how cocaine HCl and methylenedioxypyrovalerone, both of which powerfully activate central reward pathways, alter the gut microbiota. Cocaine methiodide, a quaternary derivative of cocaine that does not enter the brain, was included to assess peripheral influences on the gut microbiota. Both cocaine congeners caused significant and similar alterations of the gut microbiota after a 10-day course of treatment. Contrary to expectations, the effects of cocaine HCl and MDPV on the gut microbiota were most dissimilar. Functional predictions of metabolic alterations caused by the treatment drugs reaffirmed that the cocaine congeners were similar whereas MDPV was most dissimilar from the other two drugs and controls. It appears that the monoamine transporters in the gut mediate the effects of the treatment drugs. The effects of the cocaine congeners and MDPV on the gut microbiome may form the basis of interoceptive cues that can influence their abuse properties.


Subject(s)
Central Nervous System Stimulants , Cocaine , Gastrointestinal Microbiome , Synthetic Cathinone , Cocaine/pharmacology
3.
Microbiol Spectr ; 11(4): e0342922, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37486223

ABSTRACT

The composition of the vaginal microbiota is heavily influenced by pregnancy and may factor into pregnancy complications, including spontaneous preterm birth. However, results among studies have been inconsistent due, in part, to variation in sample sizes and ethnicity. Thus, an association between the vaginal microbiota and preterm labor continues to be debated. Yet, before assessing associations between the composition of the vaginal microbiota and preterm labor, a robust and in-depth characterization of the vaginal microbiota throughout pregnancy in the specific study population under investigation is required. Here, we report a large longitudinal study (n = 474 women, 1,862 vaginal samples) of a predominantly African-American cohort-a population that experiences a relatively high rate of pregnancy complications-evaluating associations between individual identity, gestational age, and other maternal characteristics with the composition of the vaginal microbiota throughout gestation resulting in term delivery. The principal factors influencing the composition of the vaginal microbiota in pregnancy are individual identity and gestational age at sampling. Other factors are maternal age, parity, obesity, and self-reported Cannabis use. The general pattern across gestation is for the vaginal microbiota to remain or transition to a state of Lactobacillus dominance. This pattern can be modified by maternal parity and obesity. Regardless, network analyses reveal dynamic associations among specific bacterial taxa within the vaginal ecosystem, which shift throughout the course of pregnancy. This study provides a robust foundational understanding of the vaginal microbiota in pregnancy and sets the stage for further investigation of this microbiota in obstetrical disease. IMPORTANCE There is debate regarding links between the vaginal microbiota and pregnancy complications, especially spontaneous preterm birth. Inconsistencies in results among studies are likely due to differences in sample sizes and cohort ethnicity. Ethnicity is a complicating factor because, although all bacterial taxa commonly inhabiting the vagina are present among all ethnicities, the frequencies of these taxa vary among ethnicities. Therefore, an in-depth characterization of the vaginal microbiota throughout pregnancy in the specific study population under investigation is required prior to evaluating associations between the vaginal microbiota and obstetrical disease. This initial investigation is a large longitudinal study of the vaginal microbiota throughout gestation resulting in a term delivery in a predominantly African-American cohort, a population that experiences disproportionally negative maternal-fetal health outcomes. It establishes the magnitude of associations between maternal characteristics, such as age, parity, body mass index, and self-reported Cannabis use, on the vaginal microbiota in pregnancy.


Subject(s)
Microbiota , Obstetric Labor, Premature , Pregnancy Complications , Premature Birth , Humans , Pregnancy , Female , Infant, Newborn , Parity , Maternal Age , Pregnant Women , Premature Birth/epidemiology , Premature Birth/microbiology , Gestational Age , Longitudinal Studies , Vagina/microbiology , Bacteria , Obesity
4.
Microbiol Spectr ; 10(4): e0128622, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35916526

ABSTRACT

Mice are frequently used as animal models for mechanistic studies of infection and obstetrical disease, yet characterization of the murine microbiota during pregnancy is lacking. The objective of this study was to characterize the microbiotas of distinct body sites of the pregnant mouse-vagina, oral cavity, intestine, and lung-that harbor microorganisms that could potentially invade the murine amniotic cavity, thus leading to adverse pregnancy outcomes. The microbiotas of these body sites were characterized through anoxic, hypoxic, and oxic culture as well as through 16S rRNA gene sequencing. With the exception of the vagina, the cultured microbiotas of each body site varied by atmosphere, with the greatest diversity in the cultured microbiota appearing under anoxic conditions. Only cultures of the vagina were comprehensively representative of the microbiota observed through direct DNA sequencing of body site samples, primarily due to the predominance of two Rodentibacter strains. Identified as Rodentibacter pneumotropicus and Rodentibacter heylii, these isolates exhibited predominance patterns similar to those of Lactobacillus crispatus and Lactobacillus iners in the human vagina. Whole-genome sequencing of these Rodentibacter strains revealed shared genomic features, including the ability to degrade glycogen, an abundant polysaccharide in the vagina. In summary, we report body site-specific microbiotas in the pregnant mouse with potential ecological parallels to those of humans. Importantly, our findings indicate that the vaginal microbiotas of pregnant mice can be readily cultured, suggesting that mock vaginal microbiotas can be tractably generated and maintained for experimental manipulation in future mechanistic studies of host vaginal-microbiome interactions. IMPORTANCE Mice are widely utilized as animal models of obstetrical complications; however, the characterization of the murine microbiota during pregnancy has been neglected. Microorganisms from the vagina, oral cavity, intestine, and lung have been found in the intra-amniotic space, where their presence threatens the progression of gestation. Here, we characterized the microbiotas of pregnant mice and established the appropriateness of culture in capturing the microbiota at each site. The high relative abundance of Rodentibacter observed in the vagina is similar to that of Lactobacillus in humans, suggesting potential ecological parallels. Importantly, we report that the vaginal microbiota of the pregnant mouse can be readily cultured under hypoxic conditions, demonstrating that mock microbial communities can be utilized to test the potential ecological parallels between microbiotas in human and murine pregnancy and to evaluate the relevance of the structure of these microbiotas for adverse pregnancy outcomes, especially intra-amniotic infection and preterm birth.


Subject(s)
Microbiota , Premature Birth , Animals , Bacteria/genetics , DNA, Bacterial/genetics , Female , Humans , Infant, Newborn , Intestines , Lung , Mice , Microbiota/genetics , Mouth , Pregnancy , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vagina/microbiology
5.
Reproduction ; 164(2): R11-R45, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35559791

ABSTRACT

In brief: The syndrome of preterm labor comprises multiple established and novel etiologies. This review summarizes the distinct immune mechanisms implicated in preterm labor and birth and highlights potential strategies for its prevention. Abstract: Preterm birth, the leading cause of neonatal morbidity and mortality worldwide, results from preterm labor, a syndrome that includes multiple etiologies. In this review, we have summarized the immune mechanisms implicated in intra-amniotic inflammation, the best-characterized cause of preterm labor and birth, as well as novel etiologies non-associated with intra-amniotic inflammation (i.e. formally known as idiopathic). While the intra-amniotic inflammatory responses driven by microbes (infection) or alarmins (sterile) have some overlap in the participating cellular and molecular processes, the distinct natures of these two conditions necessitate the implementation of specific approaches to prevent adverse pregnancy and neonatal outcomes. Intra-amniotic infection can be treated with the correct antibiotics, whereas sterile intra-amniotic inflammation could potentially be treated by administering a combination of anti-inflammatory drugs (e.g. betamethasone, inflammasome inhibitors, etc.). Recent evidence also supports the role of fetal T-cell activation as a newly described trigger for preterm labor and birth in a subset of cases diagnosed as idiopathic. Moreover, herein we also provide evidence of two maternally-driven immune mechanisms responsible for preterm births formerly considered to be idiopathic. First, the impairment of maternal Tregs can lead to preterm birth, likely due to the loss of immunosuppressive activity resulting in unleashed effector T-cell responses. Secondly, homeostatic macrophages were shown to be essential for maintaining pregnancy and promoting fetal development, and the adoptive transfer of homeostatic M2-polarized macrophages shows great promise for preventing inflammation-induced preterm birth. Collectively, in this review, we discuss the established and novel immune mechanisms responsible for preterm birth and highlight the potential targets for novel strategies aimed at preventing the multi-etiological syndrome of preterm labor leading to preterm birth.


Subject(s)
Obstetric Labor, Premature , Premature Birth , Female , Homeostasis , Humans , Infant, Newborn , Inflammation/metabolism , Obstetric Labor, Premature/etiology , Obstetric Labor, Premature/prevention & control , Parturition , Pregnancy , Premature Birth/etiology , Premature Birth/prevention & control
6.
Inflamm Res ; 71(5-6): 653-668, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35445873

ABSTRACT

OBJECTIVE: To comprehensively characterize monocyte and neutrophil responses to E. coli and its product [lipopolysaccharide (LPS) or endotoxin] in vitro during pregnancy. MATERIAL OR SUBJECTS: Peripheral blood was collected from pregnant women during the third trimester (n = 20) and from non-pregnant women (n = 20). METHODS: The number, phagocytic activity, and reactive oxygen species (ROS) production of peripheral monocytes and neutrophils were investigated using flow cytometry. The phenotypes of peripheral monocytes and neutrophils after acute or chronic LPS stimulation were also determined using flow cytometry. Cytokine profiles were quantified for LPS-stimulated peripheral blood mononuclear cells (PBMCs) and a whole blood TruCulture® system using a multiplex immunoassay. RESULTS: Increased number, phagocytic activity, and ROS production capacity of monocytes and neutrophils were found in pregnant compared to non-pregnant women. Additionally, specific subsets of pro-inflammatory monocytes (IL-6+CD14+ or MIP-1α+CD14+ cells) and neutrophils (IL-1ß+CD15+ or MIP-1ß+CD15+ cells) were increased in pregnant women in response to acute LPS stimulation. Moreover, distinct subsets of intermediate-activated monocytes expressing CD142, IL-6, and IL-1RA were increased in pregnant women upon chronic LPS stimulation. Last, pregnant women displayed a different cytokine profile than non-pregnant women in LPS-stimulated PBMCs and in whole blood. CONCLUSIONS: Pregnancy tailors the immune responses of circulating monocytes and neutrophils to endotoxin, a Gram-negative bacterial product.


Subject(s)
Endotoxins , Monocytes , Neutrophils , Pregnancy , Endotoxins/pharmacology , Escherichia coli , Female , Humans , Interleukin-6 , Lipopolysaccharides/pharmacology , Monocytes/immunology , Monocytes/physiology , Neutrophils/immunology , Neutrophils/physiology , Pregnancy/blood , Pregnancy/immunology , Pregnancy/physiology , Reactive Oxygen Species
7.
Front Immunol ; 13: 820366, 2022.
Article in English | MEDLINE | ID: mdl-35296083

ABSTRACT

The existence of an amniotic fluid microbiota (i.e., a viable microbial community) in mammals is controversial. Its existence would require a fundamental reconsideration of fetal in utero exposure to and colonization by microorganisms and the role of intra-amniotic microorganisms in fetal immune development as well as in pregnancy outcomes. In this study, we determined whether the amniotic fluid of mice harbors a microbiota in late gestation. The profiles of the amniotic fluids of pups located proximally or distally to the cervix were characterized through quantitative real-time PCR, 16S rRNA gene sequencing, and culture (N = 21 dams). These profiles were compared to those of technical controls for bacterial and DNA contamination. The load of 16S rRNA genes in the amniotic fluid exceeded that in controls. Additionally, the 16S rRNA gene profiles of the amniotic fluid differed from those of controls, with Corynebacterium tuberculostearicum being differentially more abundant in amniotic fluid profiles; however, this bacterium was not cultured from amniotic fluid. Of the 42 attempted bacterial cultures of amniotic fluids, only one yielded bacterial growth - Lactobacillus murinus. The 16S rRNA gene of this common murine-associated bacterium was not detected in any amniotic fluid sample, suggesting it did not originate from the amniotic fluid. No differences in the 16S rRNA gene load, 16S rRNA gene profile, or bacterial culture were observed between the amniotic fluids located Proximally and distally to the cervix. Collectively, these data indicate that, although there is a modest DNA signal of bacteria in murine amniotic fluid, there is no evidence that this signal represents a viable microbiota. While this means that amniotic fluid is not a source of microorganisms for in utero colonization in mice, it may nevertheless contribute to fetal exposure to microbial components. The developmental consequences of this observation warrant further investigation.


Subject(s)
Amniotic Fluid , Microbiota , Amniotic Fluid/microbiology , Animals , Bacteria/genetics , Female , Mammals/genetics , Mice , Microbiota/genetics , Pregnancy , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction
8.
Proc Biol Sci ; 287(1924): 20192950, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32228408

ABSTRACT

The fitness of group-living animals often depends on how well members share information needed for collective decision-making. Theoretical studies have shown that collective choices can emerge in a homogeneous group of individuals following identical rules, but real animals show much evidence for heterogeneity in the degree and nature of their contribution to group decisions. In social insects, for example, the transmission and processing of information is influenced by a well-organized division of labour. Studies that accurately quantify how this behavioural heterogeneity affects the spread of information among group members are still lacking. In this paper, we look at nest choices during colony emigrations of the ant Temnothorax rugatulus and quantify the degree of behavioural heterogeneity of workers. Using clustering methods and network analysis, we identify and characterize four behavioural castes of workers-primary, secondary, passive and wandering-covering distinct roles in the spread of information during an emigration. This detailed characterization of the contribution of each worker can improve models of collective decision-making in this species and promises a deeper understanding of behavioural variation at the colony level.


Subject(s)
Ants/physiology , Behavior, Animal , Social Behavior , Animal Migration , Animals
9.
Sci Rep ; 6: 29828, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27465430

ABSTRACT

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection, but few examples have been described in nature. Here we show that group selection can explain the evolution of cooperative nest founding in the harvester ant Pogonomyrmex californicus. Through most of this species' range, colonies are founded by single queens, but in some populations nests are instead founded by cooperative groups of unrelated queens. In mixed groups of cooperative and single-founding queens, we found that aggressive individuals had a survival advantage within their nest, but foundress groups with such non-cooperators died out more often than those with only cooperative members. An agent-based model shows that the between-group advantage of the cooperative phenotype drives it to fixation, despite its within-group disadvantage, but only when population density is high enough to make between-group competition intense. Field data show higher nest density in a population where cooperative founding is common, consistent with greater density driving the evolution of cooperative foundation through group selection.


Subject(s)
Ants/physiology , Cooperative Behavior , Aggression , Animals , Biological Evolution , Female , Phenotype , Population Dynamics , Social Behavior
10.
Am Nat ; 187(6): 765-75, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27172595

ABSTRACT

Social dominance hierarchies are widespread, but little is known about the mechanisms that produce nonlinear structures. In addition to despotic hierarchies, where a single individual dominates, shared hierarchies exist, where multiple individuals occupy a single rank. In vertebrates, these complex dominance relationships are thought to develop from interactions that require higher cognition, but similar cases of shared dominance have been found in social insects. Combining empirical observations with a modeling approach, we show that all three hierarchy structures-linear, despotic, and shared-can emerge from different combinations of simple interactions present in social insects. Our model shows that a linear hierarchy emerges when a typical winner-loser interaction (dominance biting) is present. A despotic hierarchy emerges when a policing interaction is added that results in the complete loss of dominance status for an attacked individual (physical policing). Finally, a shared hierarchy emerges with the addition of a winner-winner interaction that results in a positive outcome for both interactors (antennal dueling). Antennal dueling is an enigmatic ant behavior that has previously lacked a functional explanation. These results show how complex social traits can emerge from simple behaviors without requiring advanced cognition.


Subject(s)
Ants/physiology , Behavior, Animal , Hierarchy, Social , Aggression , Animals , Competitive Behavior , Female , Male , Models, Theoretical , Reproduction/physiology , Social Dominance
11.
Curr Zool ; 62(3): 207-214, 2016 Jun.
Article in English | MEDLINE | ID: mdl-29491907

ABSTRACT

Information sharing is a critical task for group-living animals. The pattern of sharing can be modeled as a network whose structure can affect the decision-making performance of individual members as well as that of the group as a whole. A fully connected network, in which each member can directly transfer information to all other members, ensures rapid sharing of important information, such as a promising foraging location. However, it can also impose costs by amplifying the spread of inaccurate information (if, for example the foraging location is actually not profitable). Thus, an optimal network structure should balance effective sharing of current knowledge with opportunities to discover new information. We used a computer simulation to measure how well groups characterized by different network structures (fully connected, small world, lattice, and random) find and exploit resource peaks in a variable environment. We found that a fully connected network outperformed other structures when resource quality was predictable. When resource quality showed random variation, however, the small world network was better than the fully connected one at avoiding extremely poor outcomes. These results suggest that animal groups may benefit by adjusting their information-sharing network structures depending on the noisiness of their environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...