Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 571, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233431

ABSTRACT

Miniaturized spectrometers are of immense interest for various on-chip and implantable photonic and optoelectronic applications. State-of-the-art conventional spectrometer designs rely heavily on bulky dispersive components (such as gratings, photodetector arrays, and interferometric optics) to capture different input spectral components that increase their integration complexity. Here, we report a high-performance broadband spectrometer based on a simple and compact van der Waals heterostructure diode, leveraging a careful selection of active van der Waals materials- molybdenum disulfide and black phosphorus, their electrically tunable photoresponse, and advanced computational algorithms for spectral reconstruction. We achieve remarkably high peak wavelength accuracy of ~2 nanometers, and broad operation bandwidth spanning from ~500 to 1600 nanometers in a device with a ~ 30×20 µm2 footprint. This diode-based spectrometer scheme with broadband operation offers an attractive pathway for various applications, such as sensing, surveillance and spectral imaging.

2.
Adv Sci (Weinh) ; 10(29): e2303437, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37551999

ABSTRACT

Molybdenum ditelluride (MoTe2 ) exhibits immense potential in post-silicon electronics due to its bandgap comparable to silicon. Unlike other 2D materials, MoTe2 allows easy phase modulation and efficient carrier type control in electrical transport. However, its unstable nature and low-carrier mobility limit practical implementation in devices. Here, a deterministic method is proposed to improve the performance of MoTe2 devices by inducing local tensile strain through substrate engineering and encapsulation processes. The approach involves creating hole arrays in the substrate and using atomic layer deposition grown Al2 O3 as an additional back-gate dielectric layer on SiO2 . The MoTe2 channel is passivated with a thick layer of Al2 O3 post-fabrication. This structure significantly improves hole and electron mobilities in MoTe2 field-effect transistors (FETs), approaching theoretical limits. Hole mobility up to 130 cm-2  V-1 s-1 and electron mobility up to 160 cm-2  V-1 s-1 are achieved. Introducing local tensile strain through the hole array enhances electron mobility by up to 6 times compared to the unstrained devices. Remarkably, the devices exhibit metal-insulator transition in MoTe2 FETs, with a well-defined critical point. This study presents a novel technique to enhance carrier mobility in MoTe2 FETs, offering promising prospects for improving 2D material performance in electronic applications.

3.
ACS Appl Mater Interfaces ; 15(3): 4216-4225, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36635093

ABSTRACT

Fabricating electronic and optoelectronic devices by transferring pre-deposited metal electrodes has attracted considerable attention, owing to the improved device performance. However, the pre-deposited metal electrode typically involves complex fabrication procedures. Here, we introduce our facile electrode fabrication process which is free of lithography, lift-off, and reactive ion etching by directly press-transferring a single-walled carbon nanotube (SWCNT) film. We fabricated Schottky diodes for photodetector applications using dry-transferred SWCNT films as the transparent electrode to increase light absorption in photoactive MoS2 channels. The MoS2 flake vertically stacked with an SWCNT electrode can exhibit excellent photodetection performance with a responsivity of ∼2.01 × 103 A/W and a detectivity of ∼3.2 × 1012 Jones. Additionally, we carried out temperature-dependent current-voltage measurement and Fowler-Nordheim (FN) plot analysis to explore the dominant charge transport mechanism. The enhanced photodetection in the vertical configuration is found to be attributed to the FN tunneling and internal photoemission of charge carriers excited from indium tin oxide across the MoS2 layer. Our study provides a novel concept of using a photoactive MoS2 layer as a tunneling layer itself with a dry-transferred transparent SWCNT electrode for high-performance and energy-efficient optoelectronic devices.

4.
ACS Appl Mater Interfaces ; 14(27): 31140-31147, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35763802

ABSTRACT

Mixed-dimensional heterostructures combine the merits of materials of different dimensions; therefore, they represent an advantageous scenario for numerous technological advances. Such an approach can be exploited to tune the physical properties of two-dimensional (2D) layered materials to create unprecedented possibilities for anisotropic and high-performance photonic and optoelectronic devices. Here, we report a new strategy to engineer the light-matter interaction and symmetry of monolayer MoS2 by integrating it with one-dimensional (1D) AlGaAs nanowire (NW). Our results show that the photoluminescence (PL) intensity of MoS2 increases strongly in the mixed-dimensional structure because of electromagnetic field confinement in the 1D high refractive index semiconducting NW. Interestingly, the 1D NW breaks the 3-fold rotational symmetry of MoS2, which leads to a strong optical anisotropy of up to ∼60%. Our mixed-dimensional heterostructure-based phototransistors benefit from this and exhibit an improved optoelectronic device performance with marked anisotropic photoresponse behavior. Compared with bare MoS2 devices, our MoS2/NW devices show ∼5 times enhanced detectivity and ∼3 times higher photoresponsivity. Our results of engineering light-matter interaction and symmetry breaking provide a simple route to induce enhanced and anisotropic functionalities in 2D materials.

5.
Adv Sci (Weinh) ; 9(20): e2200082, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35532325

ABSTRACT

Engineering of the dipole and the symmetry of materials plays an important role in fundamental research and technical applications. Here, a novel morphological manipulation strategy to engineer the dipole orientation and symmetry of 2D layered materials by integrating them with 1D nanowires (NWs) is reported. This 2D InSe -1D AlGaAs NW heterostructure example shows that the in-plane dipole moments in InSe can be engineered in the mixed-dimensional heterostructure to significantly enhance linear and nonlinear optical responses (e.g., photoluminescence, Raman, and second harmonic generation) with an enhancement factor of up to ≈12. Further, the 1D NW can break the threefold rotational symmetry of 2D InSe, leading to a strong optical anisotropy of up to ≈65%. These results of engineering dipole orientation and symmetry breaking with the mixed-dimensional heterostructures open a new path for photonic and optoelectronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...