Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Elife ; 102021 12 06.
Article in English | MEDLINE | ID: mdl-34866574

ABSTRACT

The pathogenesis of COVID-19 is associated with a hyperinflammatory response; however, the precise mechanism of SARS-CoV-2-induced inflammation is poorly understood. Here, we investigated direct inflammatory functions of major structural proteins of SARS-CoV-2. We observed that spike (S) protein potently induced inflammatory cytokines and chemokines, including IL-6, IL-1ß, TNFα, CXCL1, CXCL2, and CCL2, but not IFNs in human and mouse macrophages. No such inflammatory response was observed in response to membrane (M), envelope (E), and nucleocapsid (N) proteins. When stimulated with extracellular S protein, human and mouse lung epithelial cells also produced inflammatory cytokines and chemokines. Interestingly, epithelial cells expressing S protein intracellularly were non-inflammatory, but elicited an inflammatory response in macrophages when co-cultured. Biochemical studies revealed that S protein triggers inflammation via activation of the NF-κB pathway in a MyD88-dependent manner. Further, such an activation of the NF-κB pathway was abrogated in Tlr2-deficient macrophages. Consistently, administration of S protein-induced IL-6, TNF-α, and IL-1ß in wild-type, but not Tlr2-deficient mice. Notably, upon recognition of S protein, TLR2 dimerizes with TLR1 or TLR6 to activate the NF-κB pathway. Taken together, these data reveal a mechanism for the cytokine storm during SARS-CoV-2 infection and suggest that TLR2 could be a potential therapeutic target for COVID-19.


Subject(s)
Inflammation/virology , NF-kappa B/physiology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Toll-Like Receptor 2/genetics , A549 Cells , Animals , HEK293 Cells , Humans , Mice , Signal Transduction , Toll-Like Receptor 2/metabolism
3.
bioRxiv ; 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33758854

ABSTRACT

Pathogenesis of COVID-19 is associated with a hyperinflammatory response; however, the precise mechanism of SARS-CoV-2-induced inflammation is poorly understood. Here we investigated direct inflammatory functions of major structural proteins of SARS-CoV-2. We observed that spike (S) protein potently induces inflammatory cytokines and chemokines including IL-6, IL-1ß, TNFa, CXCL1, CXCL2, and CCL2, but not IFNs in human and mouse macrophages. No such inflammatory response was observed in response to membrane (M), envelope (E), and neucleocapsid (N) proteins. When stimulated with extracellular S protein, human lung epithelial cells A549 also produce inflammatory cytokines and chemokines. Interestingly, epithelial cells expressing S protein intracellularly are non-inflammatory, but elicit an inflammatory response in macrophages when co-cultured. Biochemical studies revealed that S protein triggers inflammation via activation of the NF-κB pathway in a MyD88-dependent manner. Further, such an activation of the NF-κB pathway is abrogated in Tlr2-deficient macrophages. Consistently, administration of S protein induces IL-6, TNF-a, and IL-1 ß in wild-type, but not Tlr2-deficient mice. Together these data reveal a mechanism for the cytokine storm during SARS-CoV-2 infection and suggest that TLR2 could be a potential therapeutic target for COVID-19.

4.
Liver Int ; 35(4): 1213-21, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24906011

ABSTRACT

BACKGROUND & AIMS: Portal hypertension results from endothelial dysfunction after liver injury caused in part by abnormal production of endothelial cell derived nitric oxide synthase (eNOS). Here, we have postulated that endothelial mechanosensing pathways involving integrin-linked kinase (ILK) may play a critical role in portal hypertension, eNOS expression and function. In this study, we investigated the role of ILK and the small GTP-binding protein, Rho, in sinusoidal endothelial cell (SEC) eNOS regulation and function. METHODS: Primary liver SECs were isolated using standard techniques. Liver injury was induced by performing bile duct ligation (BDL). To examine the expression of Rho and ILK in vivo during wound healing, SECs were infected with constitutively active Rho (V14), a dominant negative Rho (N19) and constructs encoding ILK and a short hairpin-inhibiting ILK. RESULTS: Integrin-linked kinase expression was increased in SECs after liver injury; endothelin-1, vascular endothelial growth factor, and transforming growth factor beta-1 stimulated ILK expression in SECs. ILK expression in turn led to eNOS upregulation and to enhance eNOS phosphorylation and NO production. ILK knockdown or ILK (kinase) inhibition reduced eNOS mRNA expression, promoter activity, eNOS expression and ultimately NO production. In contrast, ILK overexpression had the opposite effect. Inhibition of ILK activity also disrupted the actin cytoskeleton in isolated SECs. Rho overexpression suppressed phosphorylation of the serine-threonine kinase, Akt and inhibited eNOS phosphorylation. Finally, inhibition of Rho function with the RGS domain of the p115-Rho-specific GEF (p115-RGS) significantly increased eNOS phosphorylation. CONCLUSIONS: Our data suggest a potential role for ILK, the cytoskeleton and ILK signalling partners including Rho in regulating intrahepatic SEC eNOS expression and function.


Subject(s)
Chemical and Drug Induced Liver Injury/enzymology , Cholestasis/enzymology , Endothelial Cells/enzymology , Liver/enzymology , Nitric Oxide Synthase Type III/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Cells, Cultured , Chemical and Drug Induced Liver Injury/genetics , Cholestasis/genetics , Cytoskeleton/enzymology , Disease Models, Animal , Enzyme Activation , Gene Expression Regulation, Enzymologic , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Rats, Sprague-Dawley , Signal Transduction , Transfection , Wound Healing , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
5.
Lab Invest ; 92(2): 305-16, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22064318

ABSTRACT

Integrin-linked kinase (ILK) is a multidomain focal adhesion protein implicated in signal transduction between integrins and growth factor/extracellular receptors. We have previously shown that ILK expression is increased in liver fibrosis and that ILK appears to be a key regulator of fibrogenesis in rat hepatic stellate cells, effectors of the fibrogenic response. Here we hypothesized that the mechanism by which ILK mediates the fibrogenic phenotype is by engaging the small GTPase, Rho in a signal transduction pathway linked to fibrogenesis. ILK function in quiescent (non-fibrogenic) and activated (fibrogenic) stellate cells was examined in cells isolated from rat livers. ILK, Rho, and Gα(12/13) signaling were manipulated using established chemical agents or specific adenoviral constructs. ILK activity was minimal in quiescent stellate cells, but prominent in activated stellate cells; inhibition of ILK activity had no effect in quiescent cells, but had prominent effects in activated cells. Overexpression of ILK in activated stellate cells increased Rho activity, but had no effect in quiescent cells. Further, endothelin-1 stimulated Rho activity in activated stellate cells, but not in quiescent cells. Rho, Rho guanine nucleotide exchange factors, and Gα(12/13) expression were increased after stellate cell activation. Inhibition of Gα(12/13) signaling, by expression of the RGS domain of the p115-Rho-specific GEF (p115-RGS) in activated stellate cells, significantly inhibited type I collagen and smooth muscle α-actin expression, both classically upregulated after stellate cell activation. The data suggest that ILK mediates Rho-dependent functional effects in activated stellate cells, and raise the possibility that ILK is important in cross-talk with the G-protein-coupled receptor system.


Subject(s)
Hepatic Stellate Cells/enzymology , Protein Serine-Threonine Kinases/metabolism , Wound Healing , Animals , Base Sequence , Blotting, Western , DNA Primers , Immunohistochemistry , Male , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction
6.
Am J Pathol ; 178(6): 2690-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21641391

ABSTRACT

In this study, we elucidated the mechanism by which adiponectin modulates hepatic stellate cell activation and fibrogenesis. Adiponectin-overexpressing transgenic mice receiving thioacetamide were resistant to fibrosis, compared with controls. In contrast, adiponectin-null animals developed severe fibrosis. Expression of collagen α1(I) and α-smooth muscle actin (α-SMA) mRNAs were significantly lower in adiponectin-overexpressing mice, compared with controls. In wild-type stellate cells exposed to a lentivirus encoding adiponectin, expression of peroxisome proliferator-activated receptor-γ (PPARγ), SREBP1c, and CEBPα mRNAs was significantly increased (3.2-, 4.1-, and 2.2-fold, respectively; n = 3; P < 0.05, adiponectin virus versus control), consistent with possible activation of an adipogenic transcriptional program. Troglitazone, a PPARγ agonist, strongly suppressed up-regulation of collagen α1(I) and α-SMA mRNA in stellate cells isolated from wild-type mice; however, stellate cells from adiponectin-null animals failed to respond to troglitazone. Furthermore, in isolated stellate cells in which PPARγ was depleted using an adenovirus-Cre-recombinase system and in which adiponectin was also overexpressed, collagen α1(I) and α-SMA were significantly inhibited. We conclude that the PPARγ effect on stellate cell activation and the fibrogenic cascade appears to be adiponectin-dependent; however, the inhibitory effect of adiponectin on stellate cell activation was not dependent on PPARγ, suggesting the presence of PPARγ-dependent as well as independent pathways in stellate cells.


Subject(s)
Hepatic Stellate Cells/metabolism , PPAR gamma/metabolism , Adiponectin/deficiency , Adiponectin/metabolism , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Body Weight , Disease Susceptibility , Gene Deletion , Hepatic Stellate Cells/pathology , Ligands , Liver/metabolism , Liver/pathology , Liver Cirrhosis/blood , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Mice , Mice, Transgenic , Phenotype , Thioacetamide
7.
J Biol Chem ; 281(34): 24863-72, 2006 Aug 25.
Article in English | MEDLINE | ID: mdl-16728409

ABSTRACT

Liver wound healing is an integrated process in which hepatic stellate cells play a major role. We hypothesized that the cellextracellular signaling protein integrin-linked kinase (ILK) is important in transducing signals from the extracellular matrix to stellate cells and thus plays a critical role in stellate cell activation and fibrogenesis during liver injury. Liver injury and subsequent stellate cell activation led to a 3-fold increase in ILK expression and increased kinase activity. Overexpression of ILK in isolated stellate cells led to enhanced motility and adhesion as well as increases in smooth muscle alpha-actin and type I collagen mRNA expression. The effects of ILK on stellate cell phenotypes were phosphatidylinositol 3-kinase-dependent. Forced expression of ILK in vivo led to increases in type I collagen, smooth muscle alpha-actin, transforming growth factor-beta, and extra domain A (EDA) fibronectin mRNAs (by 3.2-, 3.5-, 2.5-, and 2.2-fold, respectively; n = 8, p < 0.05 for each versus the control), whereas inhibition of ILK in vivo led to significant reductions in these mRNAs. Morphometric analysis revealed that ILK overexpression led to a 31.4% increase in liver collagen content (n = 8, p < 0.05 versus the control); in contrast ILK knockdown in vivo led to a significant reduction in fibrogenesis. We conclude that ILK plays an important pathophysiological role in vivo in liver wound healing.


Subject(s)
Liver/enzymology , Protein Serine-Threonine Kinases/physiology , Animals , Cells, Cultured , Connective Tissue Cells/pathology , Connective Tissue Cells/physiology , Extracellular Matrix Proteins/biosynthesis , Liver/injuries , Liver/pathology , Liver Regeneration/physiology , Male , Rats , Rats, Sprague-Dawley , Signal Transduction , Wound Healing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...