Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(11): 111002, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37774270

ABSTRACT

We make the case that there can be no low-redshift solution to the H_{0} tension. To robustly answer this question, we use a very flexible parametrization for the dark energy equation of state such that every cosmological distance still allowed by data exists within this prior volume. To then answer whether there exists a satisfactory solution to the H_{0} tension within this comprehensive parametrization, we constrained the parametric form using different partitions of the Planck cosmic microwave background, SDSS-IV/eBOSS DR16 baryon acoustic oscillation, and Pantheon supernova datasets. When constrained by just the cosmic microwave background dataset, there exists a set of equations of state which yields high H_{0} values, but these equations of state are ruled out by the combination of the supernova and baryon acoustic oscillation datasets. In other words, the constraint from the cosmic microwave background, baryon acoustic oscillation, and supernova datasets together does not allow for high H_{0} values and converges around an equation of state consistent with a cosmological constant. Thus, since this very flexible parametrization does not offer a solution to the H_{0} tension, there can be no solution to the H_{0} tension that adds physics at only low redshifts. This is directly related to the expansion history of the Universe and its geometrical properties and would include models beyond those parametrized by w(z).

2.
Phys Rev Lett ; 130(11): 111001, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-37001079

ABSTRACT

We identify examples of single field inflationary trajectories beyond the slow-roll regime that improve the fit to Planck 2018 data compared to a baseline Λ cold dark matter model with power law form of primordial spectrum and at the same time alleviate existing tensions between different datasets in the estimate of cosmological parameters such as H_{0} and S_{8}. A damped oscillation in the first Hubble flow function-or equivalently a feature in the potential-and the corresponding localized oscillations in the primordial power spectrum partially mimic the improvement in the fit of Planck data due to A_{L} or Ω_{K}. Compared to the baseline model, this model can lead simultaneously to a larger value of H_{0} and a smaller value of S_{8}, a trend that can be enhanced when the most recent SH0ES measurement for H_{0} is combined with Planck and BICEP-Keck 2018 data. Large scale structure data and more precise cosmic microwave background polarization measurements will further provide critical tests of this intermediate fast-roll phase.

3.
Phys Rev Lett ; 113(7): 071301, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25170696

ABSTRACT

Motivated by the idea that inflation occurs at the grand unified theory symmetry breaking scale, in this Letter we construct a new class of large field inflaton potentials where the inflaton starts with a power law potential; after an initial period of relatively fast roll that lasts until after a few e folds inside the horizon it transits to the attractor of the slow roll part of the potential with a lower power. Because of the initial fast roll stages of inflation, we find a suppression in scalar primordial power at large scales and at the same time the choice of the potential can provide us a tensor primordial spectrum with a high amplitude. This suppression in scalar power with a large tensor-to-scalar ratio helps us to reconcile the Planck and BICEP2 data in a single framework. We find that a transition from a cubic to quadratic form of inflaton potential generates an appropriate suppression in the power of the scalar primordial spectrum that provides a significant improvement in fit compared to the power law model when compared with Planck and BICEP2 data together. We calculate the extent of non-Gaussianity, specifically, the bispectrum for the best fit potential, and show that it is consistent with Planck bispectrum constraints.

SELECTION OF CITATIONS
SEARCH DETAIL
...