Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 662: 637-652, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38367581

ABSTRACT

Liquid marbles are droplets coated by hydrophobic particles. At low Weber numbers (We), when impacting a hydrophilic surface, the marble may bounce on the substrate repeatedly without any rupturing until the quiescence condition is achieved. The marble bouncing has gained far less attention, although its rich underlying physics is due to the interaction between liquid core, hydrophobic grain, and surrounding air. Accordingly, this research experimentally scrutinizes the marble impact and subsequent bouncing on a hydrophilic surface for the first time. Additionally, the conversion of kinetic, gravitational potential, inertial, and surface energies occurring regularly during the impact is exhaustively surveyed. Moreover, the effect of Weber and gravitational Bond numbers (Bo) on the bouncing time, maximum spreading time, maximum spreading ratio, maximum elongation ratio, and maximum restitution are investigated, which characterize the marble impact and bouncing dynamics. This study is one of the limited investigations exploring the effects of the gravitational Bond number on the results. Dimensionless correlations are proposed for the mentioned parameters based on the experimental data. Furthermore, utilizing the simplifying theoretical presumptions, correlations are suggested based on the scale analysis for the spreading time and maximum spreading ratio. The results imply that the mentioned parameters behave differently at low and moderate Weber numbers, though the distinction is more pronounced in the case of the bouncing time, maximum spreading time and maximum spreading ratio. Although increasing with the Weber number when WeWecr. In addition, the maximum elongation ratio linearly grows with the Weber number.

2.
Heliyon ; 9(9): e20193, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809404

ABSTRACT

Nowadays, several engineering applications and academic investigations have demonstrated the significance of heat transfers in general and mixed convection heat transfer (MCHT) in particular in cavities containing obstacles. This study's main goal is to analyze the MCHT of a nanofluid in a triangular cavity with a pentagonal barrier using magneto hydrodynamics (MHD). The cavity's-oriented walls are continuous cold temperature, whereas the bottom wall of the triangle and all pentagonal obstacle walls are kept at a constant high temperature. For solving governing equations, we utilized the Galerkin's finite element approach. Four dimensionless factors, Richardson number (0.01 ≤ Ri ≤ 5), Reynolds number (10 ≤ Re ≤ 50), Buoyancy ratio (0.01 ≤ Br ≤ 10) and Hartmann number (0 ≤ Ha ≤20) are examined for their effects on streamlines, isotherms, concentration, velocity, and the Nusselt number. Also, with the help of Taguchi method and Response Surface Method (RSM) the optimization of the studied dimensionless parameters has been done. The optimum values of Ri, Re, Ha and Br are obtained 4.95, 30.49,18.35 and 0.05 respectively. Ultimately, a correlation has been extracted for obtaining the optimum average Nusselt number (Nu) in mentioned cavity.

3.
Langmuir ; 39(27): 9406-9417, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37382433

ABSTRACT

Liquid marbles are being promoted as a replacement for conventional droplets in digital microfluidics. Liquid marbles can be remotely controlled by an external magnetic field if ferrofluid is utilized as their liquid cores. In this study, the vibration and jumping of a ferrofluid marble is experimentally and theoretically investigated. An external magnetic field is utilized to induce deformation in a liquid marble and an increase in its surface energy. As the magnetic field is switched off, the stored surface energy converts to gravitational potential and kinetic energies until it is dissipated. An equivalent linear mass-spring-damper system is used to study the vibration of the liquid marble, and the effect of its volume and initial magnetic stimulus on the vibrational characteristics, such as natural frequency, damping ratio, and deformation of the liquid marble, is experimentally examined. By analyzing these oscillations, the effective surface tension of the liquid marble is evaluated. Also, a novel theoretical model is proposed to obtain the damping ratio of the liquid marble, suggesting a new tool for the measurement of liquid viscosity. Interestingly, it is observed that the liquid marble jumps from the surface in the case of high initial deformation. Based on conservation law of energy, a theoretical model for predicting the liquid marbles jumping height and the boundary between jumping and non-jumping zones in terms of nondimensional numbers, namely, magnetic and gravitational Bond numbers and Ohnesorge number, is proposed with an acceptable error compared to experimental data.

4.
Sci Rep ; 13(1): 10543, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37386232

ABSTRACT

Embracing an interaction between the phase change material (PCM) and the droplets of a heat transfer fluid, the direct contact (DC) method suggests a cutting-edge solution for expediting the phase change rates of PCMs in thermal energy storage (TES) units. In the direct contact TES configuration, when impacting the molten PCM pool, droplets evaporate, provoking the formation of a solidified PCM area (A). Then, they reduce the created solid temperature, leading to a minimum temperature value (Tmin). As a novelty, this research intends to maximize A and minimize Tmin since augmenting A expedites the discharge rate, and by lowering Tmin, the generated solid is preserved longer, resulting in a higher storage efficacy. To take the influences of interaction between droplets into account, the simultaneous impingement of two ethanol droplets on a molten paraffin wax is surveyed. Impact parameters (Weber number, impact spacing, and the pool temperature) govern the objective functions (A and Tmin). Initially, through high-speed and IR thermal imaging, the experimental values of objective functions are achieved for a wide range of impact parameters. Afterward, exploiting an artificial neural network (ANN), two models are fitted to A and Tmin, respectively. Subsequently, the models are provided for the NSGA-II algorithm to implement multi-objective optimization (MOO). Eventually, utilizing two different final decision-making (FDM) approaches (LINMAP and TOPSIS), optimized impact parameters are attained from the Pareto front. Regarding the results, the optimum amount of Weber number, impact spacing, and pool temperature accomplished by LINMAP and TOPSIS procedures are 309.44, 2.84 mm, 66.89 °C, and 294.98, 2.78 mm, 66.89 °C, respectively. This is the first investigation delving into the optimization of multiple droplet impacts for TES applications.


Subject(s)
Body Fluids , Neural Networks, Computer , Animals , Algorithms , Estrus , Ethanol
5.
Langmuir ; 39(6): 2246-2259, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36722776

ABSTRACT

Liquid marbles are droplets enwrapped by a layer of hydrophobic micro/nanoparticles. Due to the isolation of fluid from its environment, reduction in evaporation rate, low friction with the surfaces, and capability of manipulation even on hydrophilic surfaces, liquid marbles have attracted the attention of researchers in digital microfluidics. This study investigates the manipulation of ferrofluid liquid marbles (FLMs) under DC and pulse width-modulated (PWM) magnetic fields generated by an electromagnet for the first time. At first, the threshold of the magnetic field for manipulating these FLMs is studied. Afterward, the dynamic response of the FLMs to the DC magnetic field for different FLM volumes, coil currents, and initial distances of FLM from the coil is studied, and a theoretical model is proposed. By applying the PWM magnetic field, it is possible to gain more control over the manipulation of the FLMs on the surface and adjust their position more accurately. Results indicate that with a decrease in FLM volume, coil current, and duty cycle, the FLM step length decreases; hence, FLM manipulation is more precise. Under the PWM magnetic field, it is observed that FLM movement is not synchronous with the generated pulse, and even after the coil is turned off, FLMs keep their motion. In the end, with proper adjustment of the electromagnet pulse width, launching of FLMs at a distance farther than the coil is observed.

6.
Sci Rep ; 12(1): 10868, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35760843

ABSTRACT

The magnetic actuation of ferrofluid droplets offers an inspiring tool in widespread engineering and biological applications. In this study, the dynamics of ferrofluid droplet generation with a Drop-on-Demand feature under a non-uniform magnetic field is investigated by multiscale numerical modeling. Langevin equation is assumed for ferrofluid magnetic susceptibility due to the strong applied magnetic field. Large and small computational domains are considered. In the larger domain, the magnetic field is obtained by solving Maxwell equations. In the smaller domain, a coupling of continuity, Navier Stokes, two-phase flow, and Maxwell equations are solved by utilizing the magnetic field achieved by the larger domain for the boundary condition. The Finite volume method and coupling of level-set and Volume of Fluid methods are used for solving equations. The droplet formation is simulated in a two-dimensional axisymmetric domain. The method of solving fluid and magnetic equations is validated using a benchmark. Then, ferrofluid droplet formation is investigated experimentally, and the numerical results showed good agreement with the experimental data. The effect of 12 dimensionless parameters, including the ratio of magnetic, gravitational, and surface tension forces, the ratio of the nozzle and magnetic coil dimensions, and ferrofluid to continuous-phase properties ratios are studied. The results showed that by increasing the magnetic Bond number, gravitational Bond number, Ohnesorge number, dimensionless saturation magnetization, initial magnetic susceptibility of ferrofluid, the generated droplet diameter reduces, whereas the formation frequency increases. The same results were observed when decreasing the ferrite core diameter to outer nozzle diameter, density, and viscosity ratios.

7.
Micromachines (Basel) ; 14(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36677108

ABSTRACT

Liquid marbles are droplets encapsulated by a layer of hydrophobic nanoparticles and have been extensively employed in digital microfluidics and lab-on-a-chip systems in recent years. In this study, magnetic liquid marbles were used to manipulate nonmagnetic liquid marbles. To achieve this purpose, a ferrofluid liquid marble (FLM) was employed and attracted toward an electromagnet, resulting in an impulse to a water liquid marble (WLM) on its way to the electromagnet. It was observed that the manipulation of the WLM by the FLM was similar to the collision of billiard balls except that the liquid marbles exhibited an inelastic collision. Taking the FLM as the projectile ball and the WLM as the other target balls, one can adjust the displacement and direction of the WLM precisely, similar to an expert billiard player. Firstly, the WLM displacement can be adjusted by altering the liquid marble volumes, the initial distances from the electromagnet, and the coil current. Secondly, the WLM direction can be adjusted by changing the position of the WLM relative to the connecting line between the FLM center and the electromagnet. Results show that when the FLM or WLM volume increases by five times, the WLM shooting distance approximately increases by 200% and decreases by 75%, respectively.

8.
Soft Matter ; 17(5): 1317-1329, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33313630

ABSTRACT

Micro-magnetofluidics offers a promising tool for better control over the ferrofluid droplet manipulation which has been vastly utilized in biomedical applications in recent years. In this study, the ferrofluid droplet splitting under an asymmetric Pulse-Width-Modulated (PWM) magnetic field in a T-junction is numerically investigated using a finite volume method and VOF two-phase model. By utilizing the PWM magnetic field, two novel regimes of ferrofluid droplet splitting named as Flowing through the Same Branch (FSB) and Double Splitting (DS) have been observed for the first time. In the FSB regime, the daughter droplets move out of the same microchannel outlet, and in the DS regime, the droplet splitting occurs two times which results in generating three daughter droplets. The main problem related to the asymmetric droplet splitting under a steady magnetic field is daughter droplet trapping. By using a PWM magnetic field, this issue is resolved and the trapped/escaped regions are obtained in terms of the duty cycle and dimensionless magnetic field frequency. The effects of six important dimensionless parameters on the splitting ratio, including magnetic Bond number, duty cycle, dimensionless magnetic field frequency, capillary number, dimensionless mother droplet length, and dimensionless dipole position are investigated. The results showed that the splitting ratio increases with increasing magnetic Bond number or duty cycle, or decreasing the dimensionless magnetic field frequency. Eventually, a correlation is offered for the splitting ratio based on the dimensionless variables with an average relative error of 2.67%.

9.
Langmuir ; 36(26): 7724-7740, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32513001

ABSTRACT

Drop formation has been the focus of many studies because of its vast application in biomedicine and engineering, as well as its rich underlying physics. Applying a magnetic force on ferrofluids can provide more control over the formation process of the droplet. In this study, a time-dependent, nonuniform magnetic field was used for the formation of ferrofluid droplets using a nozzle. A pulse-width-modulation signal (PWM) was utilized to induce the time-dependent magnetic field, and a drop-on-demand system was designed using the capability of the PWM magnetic field. Three kinds of drop formation regimes under the PWM magnetic field were seen. Also, a new droplet generation regime was observed in which the drop is formed while it bounces back to the nozzle during the off-time period of the magnetic excitation. As compared to other techniques, the main advantage of droplet formation in this regime is that there will be no satellite droplet during the pinch-off. The regime map of drop formation based on the magnetic Bond number and the dimensionless induced frequency was obtained. Also, the effect of the duty cycle, the induced frequency, the magnetic induction, and the vertical interval between the coil's top surface and the nozzle on the drop formation evolution, the equivalent diameter of the droplets, the frequency of droplet formation, and the pulses that are necessary to form a drop was studied. Additionally, it was illustrated that by prolonging the duty cycle, the magnetic induction, or by decreasing the induced frequency, the equivalent diameter of the drop and the pulses that are necessary to form a drop reduce, while the frequency of drop formation increases. Eventually, a correlation for predicting the nondimensionalized diameter of the droplet, based on dimensionless variables, was presented with a maximum relative error of 8.1% and an average relative error equal to 2.2%.

10.
Appl Opt ; 52(20): 4950-8, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23852211

ABSTRACT

Optical separation, which is a contactless and accurate technique, has been mostly used to manipulate single particles. This work mainly aims to present an effective technique for optical propulsion and separation of a group of microscopic particles that are suspended in liquids. An experimental study is conducted to assess the effect of radiation pressure of a high-power laser on a dilute dispersion of microparticles in water using microscopic image analysis. Results of separation experiments indicate that the manipulation mechanism is capable of sorting the microscopic particles in two size classes. Compared to common optical separators, this configuration has a benefit of separating many particles simultaneously.

11.
Article in English | MEDLINE | ID: mdl-23767616

ABSTRACT

Symmetric T junctions have been used widely in microfluidics to generate equal-sized microdroplets, which are applicable in drug delivery systems. A newly proposed method for generating unequal-sized microdroplets at a T junction is investigated theoretically and experimentally. Asymmetric T junctions with branches of identical lengths and different cross sections are utilized for this aim. An equation for the critical breakup of droplets at asymmetric T junctions and one for determining the breakup point of droplets are developed. A good agreement was observed between the theories (present and previous) and the experiments.


Subject(s)
Capsules/chemical synthesis , Drug Compounding/methods , Microfluidics/instrumentation , Microfluidics/methods , Models, Chemical , Models, Molecular , Rheology/methods , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...