Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 19(6): e0303340, 2024.
Article in English | MEDLINE | ID: mdl-38829856

ABSTRACT

The subject matter of surfaces in computer aided geometric design (CAGD) is the depiction and design of surfaces in the computer graphics arena. Due to their geometric features, modeling of Bézier curves and surfaces with their shape parameters is the most well-liked topic of research in CAGD/computer-aided manufacturing (CAM). The primary challenges in industries such as automotive, shipbuilding, and aerospace are the design of complex surfaces. In order to address this issue, the continuity constraints between surfaces are utilized to generate complex surfaces. The parametric and geometric continuities are the two metrics commonly used for establishing connections among surfaces. This paper proposes continuity constraints between two generalized Bézier-like surfaces (gBS) with different shape parameters to address the issue of modeling and designing surfaces. Initially, the generalized form of C3 and G3 of generalized Bézier-like curves (gBC) are developed. To check the validity of these constraints, some numerical examples are also analyzed with graphical representations. Furthermore, for a continuous connection among these gBS, the necessary and sufficient G1 and G2 continuity constraints are also developed. It is shown through the use of several geometric designs of gBS that the recommended basis can resolve the shape and position adjustment problems associated with Bézier surfaces more effectively than any other basis. As a result, the proposed scheme not only incorporates all of the geometric features of curve design schemes but also improves upon their faults, which are typically encountered in engineering. Mainly, by changing the values of shape parameters, we can alter the shape of the curve by our choice which is not present in the standard Bézier model. This is the main drawback of traditional Bézier model.


Subject(s)
Models, Theoretical , Computer-Aided Design , Algorithms , Computer Simulation , Computer Graphics , Surface Properties
2.
PLoS One ; 18(12): e0295525, 2023.
Article in English | MEDLINE | ID: mdl-38100449

ABSTRACT

Splines are piecewise polynomials that are as smooth as they can be without forming a single polynomial. They are linked at specific points known as knots. Splines are useful for a variety of problems in numerical analysis and applied mathematics because they are simple to store and manipulate on a computer. These include, for example, numerical quadrature, function approximation, data fitting, etc. In this study, cubic B-spline (CBS) functions are used to numerically solve the time fractional diffusion wave equation (TFDWE) with Caputo-Fabrizio derivative. To discretize the spatial and temporal derivatives, CBS with θ-weighted scheme and the finite difference approach are utilized, respectively. Convergence analysis and stability of the presented method are analyzed. Some examples are used to validate the suggested scheme, and they show that it is feasible and fairly accurate.


Subject(s)
Algorithms , Diffusion
3.
Eng Comput ; 38(1): 901-917, 2022.
Article in English | MEDLINE | ID: mdl-34376880

ABSTRACT

The present paper deals with cubic B-spline approximation together with θ -weighted scheme to obtain numerical solution of the time fractional advection diffusion equation using Atangana-Baleanu derivative. To discretize the Atangana-Baleanu time derivative containing a non-singular kernel, finite difference scheme is utilized. The cubic basis functions are associated with spatial discretization. The current discretization scheme used in the present study is unconditionally stable and the convergence is of order O ( h 2 + Δ t 2 ) . The proposed scheme is validated through some numerical examples which reveal the current scheme is feasible and quite accurate.

SELECTION OF CITATIONS
SEARCH DETAIL