Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Med Phys ; 39(6Part3): 3614, 2012 Jun.
Article in English | MEDLINE | ID: mdl-28517408

ABSTRACT

PURPOSE: To demonstrate how a small magnetic spectrometer can measure the energy spectra of seven electron beams on an Elekta Infinity tuned to match beams on a previously commissioned machine. METHODS: Energyspectra were determined from measurements of intensity profiles on 6″-long computed radiographic (CR) strips after deflecting a narrow incident beam using a small (28 lbs.), permanent magnetic spectrometer. CR plateexposures (<1cGy) required special beam reduction techniques and bremsstrahlung shielding. Curves of CR intensity (corrected for non- linearity and background) versus position were transformed into energy spectra using the transformation from position (x) on the CR plate to energy (E) based on the Lorentz force law. The effective magnetic field and its effective edge, parameters in the transformation, were obtained by fitting a plot of most probable incident energy (determined from practical range) to the peak position. RESULTS: The calibration curve (E vs. x) fit gave 0.423 Tesla for the effective magnetic field. Most resulting energy spectra were characterized by a single, asymmetric peak with peak position and FWHM increasing monotonically with beam energy. Only the 9-MeV spectrum was atypical, possibly indicating suboptimal beam tuning. These results compared well with energy spectra independently determined by adjusting each spectrum until the EGSnrc Monte Carlo calculated percent depth-dose curve agreed well with the corresponding measured curve. CONCLUSIONS: Results indicate that this spectrometer and methodology could be useful for measuring energy spectra of clinical electron beams at isocenter. Future work will (1) remove the small effect of the detector response function (due to pinhole size and incident angular spread) from the energy spectra, (2) extract the energy spectra exiting the accelerator from current results, (3) use the spectrometer to compare energy spectra of matched beams among our clinical sites, and (4) modify the spectrometer to utilize radiochromic film.

2.
Phys Rev Lett ; 107(13): 131302, 2011 Sep 23.
Article in English | MEDLINE | ID: mdl-22026838

ABSTRACT

We present results from the direct search for dark matter with the XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENON100 is a two-phase time-projection chamber with a 62 kg liquid xenon target. Interaction vertex reconstruction in three dimensions with millimeter precision allows the selection of only the innermost 48 kg as the ultralow background fiducial target. In 100.9 live days of data, acquired between January and June 2010, no evidence for dark matter is found. Three candidate events were observed in the signal region with an expected background of (1.8 ± 0.6) events. This leads to the most stringent limit on dark matter interactions today, excluding spin-independent elastic weakly interacting massive particle (WIMP) nucleon scattering cross sections above 7.0 × 10(-45) cm(2) for a WIMP mass of 50 GeV/c(2) at 90% confidence level.

3.
Phys Rev Lett ; 107(5): 051301, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21867059

ABSTRACT

We report results of a search for light (≲10 GeV) particle dark matter with the XENON10 detector. The event trigger was sensitive to a single electron, with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear recoil energy. Considering spin-independent dark matter-nucleon scattering, we exclude cross sections σ(n)>7×10(-42) cm(2), for a dark matter particle mass m(χ)=7 GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.


Subject(s)
Cosmic Radiation , Data Interpretation, Statistical , Electrons , Nuclear Physics , Humans , Light , Photons , Scattering, Radiation
4.
Phys Rev Lett ; 104(17): 172001, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20482102

ABSTRACT

Differential cross sections and photon-beam asymmetries for the gamma(p)-->K{+}Lambda(1520) reaction have been measured with linearly polarized photon beams at energies from the threshold to 2.4 GeV at 0.6or=5/2 or by a new reaction process, for example, an interference effect with the phi photoproduction having a similar bump structure in the cross sections.

5.
Phys Rev Lett ; 105(13): 131302, 2010 Sep 24.
Article in English | MEDLINE | ID: mdl-21230760

ABSTRACT

The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso in Italy, is designed to search for dark matter weakly interacting massive particles (WIMPs) scattering off 62 kg of liquid xenon in an ultralow background dual-phase time projection chamber. In this Letter, we present first dark matter results from the analysis of 11.17 live days of nonblind data, acquired in October and November 2009. In the selected fiducial target of 40 kg, and within the predefined signal region, we observe no events and hence exclude spin-independent WIMP-nucleon elastic scattering cross sections above 3.4 × 10⁻44 cm² for 55 GeV/c² WIMPs at 90% confidence level. Below 20 GeV/c², this result constrains the interpretation of the CoGeNT and DAMA signals as being due to spin-independent, elastic, light mass WIMP interactions.

6.
Phys Rev Lett ; 103(1): 012001, 2009 Jul 03.
Article in English | MEDLINE | ID: mdl-19659135

ABSTRACT

Photoproduction of Lambda(1520) with liquid hydrogen and deuterium targets was examined at photon energies below 2.4 GeV in the SPring-8 LEPS experiment. For the first time, the differential cross sections were measured at low energies and with a deuterium target. A large asymmetry of the production cross sections from protons and neutrons was observed at backward K+/0 angles. This suggests the importance of the contact term, which coexists with t-channel K exchange under gauge invariance. This interpretation was compatible with the differential cross sections, decay asymmetry, and photon beam asymmetry measured in the production from protons at forward K+ angles.

7.
Phys Rev Lett ; 102(1): 012501, 2009 Jan 09.
Article in English | MEDLINE | ID: mdl-19257183

ABSTRACT

The Sigma(1385) resonance, or Sigma;{*}, is well known as part of the standard baryon decuplet with spin J=3/2. Measurements of the reaction gammap-->K;{+}Sigma;{*0} are difficult to extract due to overlap with the nearby Lambda(1405) resonance. However, the reaction gamman-->K;{+}Sigma;{*-} has no overlap with the Lambda(1405) due to its charge. Here we report the first measurement of cross sections and beam asymmetries for photoproduction of the Sigma;{*-} from a deuteron target. The cross sections at forward angles range from 0.4 to 1.2 mub, with a broad maximum near E_{gamma} approximately 1.8 GeV. The beam asymmetries are negative, in contrast with positive values for the gamman-->K;{+}Sigma;{-} reaction.

8.
Phys Rev Lett ; 101(9): 091301, 2008 Aug 29.
Article in English | MEDLINE | ID: mdl-18851599

ABSTRACT

XENON10 is an experiment to directly detect weakly interacting massive particles (WIMPs), which may comprise the bulk of the nonbaryonic dark matter in our Universe. We report new results for spin-dependent WIMP-nucleon interactions with 129Xe and 131Xe from 58.6 live days of operation at the Laboratori Nazionali del Gran Sasso. Based on the nonobservation of a WIMP signal in 5.4 kg of fiducial liquid xenon mass, we exclude previously unexplored regions in the theoretically allowed parameter space for neutralinos. We also exclude a heavy Majorana neutrino with a mass in the range of approximately 10 GeV/c2-2 TeV/c2 as a dark matter candidate under standard assumptions for its density and distribution in the galactic halo.

9.
Phys Rev Lett ; 100(2): 021303, 2008 Jan 18.
Article in English | MEDLINE | ID: mdl-18232850

ABSTRACT

The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg xenon dual phase time projection chamber to search for dark matter weakly interacting massive particles (WIMPs). The detector measures simultaneously the scintillation and the ionization produced by radiation in pure liquid xenon to discriminate signal from background down to 4.5 keV nuclear-recoil energy. A blind analysis of 58.6 live days of data, acquired between October 6, 2006, and February 14, 2007, and using a fiducial mass of 5.4 kg, excludes previously unexplored parameter space, setting a new 90% C.L. upper limit for the WIMP-nucleon spin-independent cross section of 8.8x10(-44) cm2 for a WIMP mass of 100 GeV/c2, and 4.5x10(-44) cm2 for a WIMP mass of 30 GeV/c2. This result further constrains predictions of supersymmetric models.

10.
Phys Rev Lett ; 97(8): 082003, 2006 Aug 25.
Article in English | MEDLINE | ID: mdl-17026294

ABSTRACT

Differential cross sections and photon-beam asymmetries have been measured for the gamma n --> K+ Sigma- and gamma p --> K+Sigma0 reactions separately using liquid deuterium and hydrogen targets with incident linearly polarized photon beams of E gamma = 1.5-2.4 GeV at 0.6 < cos ThetacmK< 1. The cross section ratio of sigma K+ Sigma-/sigma K+ Sigma0, expected to be 2 on the basis of the isospin 1/2 exchange, is found to be close to 1. For the K+ Sigma- reaction, large positive asymmetries are observed, indicating the dominance of K* exchange. The large difference between the asymmetries for the K+ Sigma- and K+ Sigma0 reactions cannot be explained by simple theoretical considerations based on Regge model calculations.

11.
Phys Rev Lett ; 95(18): 182001, 2005 Oct 28.
Article in English | MEDLINE | ID: mdl-16383894

ABSTRACT

Photoproduction of a phi meson on protons was studied by means of linearly polarized photons at forward angles in the low-energy region from threshold to Egamma = 2.37 GeV. The differential cross sections at t = -|t|min do not increase smoothly as Egamma increases but show a local maximum at around 2.0 GeV. The angular distributions demonstrate that phi mesons are photoproduced predominantly by helicity-conserving processes, and the local maximum is not likely due to unnatural-parity processes.

13.
Phys Rev Lett ; 91(1): 012002, 2003 Jul 04.
Article in English | MEDLINE | ID: mdl-12906534

ABSTRACT

The gamman-->K(+)K(-)n reaction on 12C has been studied by measuring both K+ and K- at forward angles. A sharp baryon resonance peak was observed at 1.54+/-0.01 GeV/c(2) with a width smaller than 25 MeV/c(2) and a Gaussian significance of 4.6sigma. The strangeness quantum number (S) of the baryon resonance is +1. It can be interpreted as a molecular meson-baryon resonance or alternatively as an exotic five-quark state (uuddsmacr;) that decays into a K+ and a neutron. The resonance is consistent with the lowest member of an antidecuplet of baryons predicted by the chiral soliton model.

SELECTION OF CITATIONS
SEARCH DETAIL
...