Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36615939

ABSTRACT

Currently, hydrogen is recognized as the best alternative for fossil fuels because of its sustainable nature and environmentally friendly processing. In this study, hydrogen dissociation reaction is studied theoretically on the transition metal doped carbon nitride (C2N) surface through single atom catalysis. Each TMs@C2N complex is evaluated to obtain the most stable spin state for catalytic reaction. In addition, electronic properties (natural bond orbital NBO & frontier molecular orbital FMO) of the most stable spin state complex are further explored. During dissociation, hydrogen is primarily adsorbed on metal doped C2N surface and then dissociated heterolytically between metal and nitrogen atom of C2N surface. Results revealed that theFe@C2N surface is the most suitable catalyst for H2 dissociation reaction with activation barrier of 0.36 eV compared with Ni@C2N (0.40 eV) and Co@C2N (0.45 eV) complexes. The activation barrier for H2 dissociation reaction is quite low in case of Fe@C2N surface, which is comparatively better than already reported noble metal catalysts.

2.
RSC Adv ; 12(1): 365-377, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-35424493

ABSTRACT

Herein, the geometric, electronic, and nonlinear optical properties of excess electron zintl clusters Ge5AM3, Ge9AM5, and Ge10AM3 (AM = Li, Na, and K) are investigated. The clusters under consideration demonstrate considerable electronic stability as well as superalkali characteristics. The NBO charge is transferred from the alkali metal to the Ge-atoms. The FMO analysis shows fabulous conductive properties with a significant reduction in SOMO-LUMO gaps (0.79-4.04 eV) as compared with undoped systems. The designed clusters are completely transparent in the deep UV-region and show absorption in the visible and near-IR region. Being excess electron compounds these clusters exhibit remarkable hyperpolarizability response up to 8.99 × 10-26 esu, where a static second hyperpolarizability (γ o) value of up to 2.15 × 10-30 esu was recorded for Ge9Na5 superatom clusters. The excitation energy is the main controlling factor for hyperpolarizability as revealed from the two-level model study. The electro-optical Pockel's effect and the second harmonic generation phenomenon (SHG) are used to investigate dynamic nonlinear optical features. At a lower applied frequency (=532 nm), the dynamic hyperpolarizability and second hyperpolarizability values are significantly higher for the studied clusters. Furthermore, for the Ge9K5 cluster, the hyper Rayleigh scattering (HRS) increases to 5.03 × 10-26 esu.

SELECTION OF CITATIONS
SEARCH DETAIL
...