Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 22117, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335119

ABSTRACT

During development of the peripheral taste system, oral sensory neurons of the geniculate ganglion project via the chorda tympani nerve to innervate taste buds in fungiform papillae. Germline deletion of the p75 neurotrophin receptor causes dramatic axon guidance and branching deficits, leading to a loss of geniculate neurons. To determine whether the developmental functions of p75 in geniculate neurons are cell autonomous, we deleted p75 specifically in Phox2b + oral sensory neurons (Phox2b-Cre; p75fx/fx) or in neural crest-derived cells (P0-Cre; p75fx/fx) and examined geniculate neuron development. In germline p75-/- mice half of all geniculate neurons were lost. The proportion of Phox2b + neurons, as compared to Phox2b-pinna-projecting neurons, was not altered, indicating that both populations were affected similarly. Chorda tympani nerve recordings demonstrated that p75-/- mice exhibit profound deficits in responses to taste and tactile stimuli. In contrast to p75-/- mice, there was no loss of geniculate neurons in either Phox2b-Cre; p75fx/fx or P0-Cre; p75fx/fx mice. Electrophysiological analyses demonstrated that Phox2b-Cre; p75fx/fx mice had normal taste and oral tactile responses. There was a modest but significant loss of fungiform taste buds in Phox2b-Cre; p75fx/fx mice, although there was not a loss of chemosensory innervation of the remaining fungiform taste buds. Overall, these data suggest that the developmental functions of p75 are largely cell non-autonomous and require p75 expression in other cell types of the chorda tympani circuit.


Subject(s)
Geniculate Ganglion/metabolism , Receptors, Nerve Growth Factor/metabolism , Sensory Receptor Cells/metabolism , Alleles , Animals , Biomarkers , Chorda Tympani Nerve/metabolism , Fluorescent Antibody Technique , Genotype , Immunohistochemistry , Mice , Mice, Knockout , Mice, Transgenic , Receptors, Nerve Growth Factor/genetics , Taste/physiology , Touch
2.
Proc Natl Acad Sci U S A ; 115(3): E516-E525, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29282324

ABSTRACT

The development of the taste system relies on the coordinated regulation of cues that direct the simultaneous development of both peripheral taste organs and innervating sensory ganglia, but the underlying mechanisms remain poorly understood. In this study, we describe a novel, biphasic function for glial cell line-derived neurotrophic factor (GDNF) in the development and subsequent diversification of chemosensory neurons within the geniculate ganglion (GG). GDNF, acting through the receptor tyrosine kinase Ret, regulates the expression of the chemosensory fate determinant Phox2b early in GG development. Ret-/- mice, but not Retfx/fx ; Phox2b-Cre mice, display a profound loss of Phox2b expression with subsequent chemosensory innervation deficits, indicating that Ret is required for the initial amplification of Phox2b expression but not its maintenance. Ret expression is extinguished perinatally but reemerges postnatally in a subpopulation of large-diameter GG neurons expressing the mechanoreceptor marker NF200 and the GDNF coreceptor GFRα1. Intriguingly, we observed that ablation of these neurons in adult Ret-Cre/ERT2; Rosa26LSL-DTA mice caused a specific loss of tactile, but not chemical or thermal, electrophysiological responses. Overall, the GDNF-Ret pathway exerts two critical and distinct functions in the peripheral taste system: embryonic chemosensory cell fate determination and the specification of lingual mechanoreceptors.


Subject(s)
Cell Differentiation/physiology , Chemoreceptor Cells/physiology , Gene Expression Regulation, Developmental/drug effects , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Proto-Oncogene Proteins c-ret/metabolism , Taste/physiology , Animals , Geniculate Ganglion , Glial Cell Line-Derived Neurotrophic Factor/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Knockout , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-ret/genetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Signal Transduction , Tamoxifen , Temperature , Tongue/innervation , Touch , Transcription Factor Brn-3A , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...