Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 11(21): 3557-3574, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33073564

ABSTRACT

The inadequate clinical efficacy of the present anti-Alzheimer's disease (AD) drugs and their low impact on the progression of Alzheimer's disease in patients have revised the research focus from single targets to multitarget-directed ligands. A novel series of substituted triazinoindole derivatives were obtained by introducing various substituents on the indole ring for the development of multitarget-directed ligands as anti-AD agents. The experimental data indicated that some of these compounds exhibited significant anti-AD properties. Among them, 8-(piperidin-1-yl)-N-(6-(pyrrolidin-1-yl)hexyl)-5H-[1,2,4]triazino[5,6-b]indol-3-amine (60), the most potent cholinesterase inhibitor (AChE, IC50 value of 0.32 µM; BuChE, IC50 value of 0.21 µM), was also found to possess significant self-mediated Aß1-42 aggregation inhibitory activity (54% at 25 µM concentration). Additionally, compound 60 showed strong antioxidant activity. In the PAMPA assay, compound 60 exhibited blood-brain barrier penetrating ability. An acute toxicity study in rats demonstrated no sign of toxicity at doses up to 2000 mg/kg. Furthermore, compound 60 significantly restored the cognitive deficits in the scopolamine-induced mice model and Aß1-42-induced rat model. In the in silico ADMET prediction studies, the compound satisfied all the parameters of CNS acting drugs. These results highlighted the potential of compound 60 to be a promising multitarget-directed ligand for the development of potential anti-AD drugs.


Subject(s)
Alzheimer Disease , Pharmaceutical Preparations , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Animals , Blood-Brain Barrier/metabolism , Cholinesterase Inhibitors/pharmacology , Drug Design , Humans , Ligands , Mice , Rats , Structure-Activity Relationship
2.
ACS Chem Neurosci ; 10(8): 3635-3661, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31310717

ABSTRACT

The multifaceted nature of Alzheimer's disease (AD) demands treatment with multitarget-directed ligands (MTDLs) to confront the key pathological aberrations. A novel series of triazinoindole derivatives were designed and synthesized. In vitro studies revealed that all the compounds showed moderate to good anticholinesterase activity; the most active compound 23e showed an IC50 value of 0.56 ± 0.02 µM for AChE and an IC50 value of 1.17 ± 0.09 µM for BuChE. These derivatives are also endowed with potent antioxidant activity. To understand the plausible binding mode of the compound 23e, molecular docking studies and molecular dynamics simulation studies were performed, and the results indicated significant interactions of 23e within the active sites of AChE as well as BuChE. Compound 23e successfully diminished H2O2-induced oxidative stress in SH-SY5Y cells and displayed excellent neuroprotective activity against H2O2 as well as Aß-induced toxicity in SH-SY5Y cells in a concentration dependent manner. Furthermore, it did not show any significant toxicity in neuronal SH-SY5Y cells in the cytotoxicity assay. Compound 23e did not show any acute toxicity in rats at doses up to 2000 mg/kg, and it significantly reversed scopolamine-induced memory deficit in mice model. Additionally, compound 23e showed notable in silico ADMET properties. Taken collectively, these findings project compound 23e as a potential balanced MTDL in the evolution process of novel anti-AD drugs.


Subject(s)
Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Maze Learning/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Alzheimer Disease/metabolism , Animals , Cell Line, Tumor , Cholinesterase Inhibitors/therapeutic use , Humans , Hydrogen Peroxide/pharmacology , Male , Mice , Molecular Docking Simulation , Neurons/metabolism , Neuroprotective Agents/therapeutic use , Oxidative Stress/physiology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...