Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(7): 8362-8373, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405517

ABSTRACT

Human single-stranded DNA binding protein 1 (hSSB1) forms a heterotrimeric complex, known as a sensor of single-stranded DNA binding protein 1 (SOSS1), in conjunction with integrator complex subunit 3 (INTS3) and C9ORF80. This sensory protein plays an important role in homologous recombination repair of double-strand breaks in DNA to efficiently recruit other repair proteins at the damaged sites. Previous studies have identified elevated hSSB1-mediated DNA repair activities in various cancers, highlighting its potential as an anticancer target. While prior efforts have focused on inhibiting hSSB1 by targeting its DNA binding domain, this study seeks to explore the inhibition of the hSSB1 function by disrupting its interaction with the key partner protein INTS3 in the SOSS1 complex. The investigative strategy entails a molecular docking-based screening of a specific compound library against the three-dimensional structure of INTS3 at the hSSB1 binding interface. Subsequent assessments involve in vitro analyses of protein-protein interaction (PPI) disruption and cellular effects through co-immunoprecipitation and immunofluorescence assays, respectively. Moreover, the study includes an evaluation of the structural stability of ligands at the INTS3 hot-spot site using molecular dynamics simulations. The results indicate a potential in vitro disruption of the INTS3-hSSB1 interaction by three of the tested compounds obtained from the virtual screening with one impacting the recruitment of hSSB1 and INTS3 to chromatin following DNA damage. To our knowledge, our results identify the first set of drug-like compounds that functionally target INTS3-hSSB1 interaction, and this provides the basis for further biophysical investigations that should help to speed up PPI inhibitor discovery.

2.
Br J Cancer ; 130(7): 1196-1205, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38287178

ABSTRACT

BACKGROUND: 5-Fluorouracil (5-FU) remains a core component of systemic therapy for colorectal cancer (CRC). However, response rates remain low, and development of therapy resistance is a primary issue. Combinatorial strategies employing a second agent to augment the therapeutic effect of chemotherapy is predicted to reduce the incidence of treatment resistance and increase the durability of response to therapy. METHODS: Here, we employed quantitative proteomics approaches to identify novel druggable proteins and molecular pathways that are deregulated in response to 5-FU, which might serve as targets to improve sensitivity to chemotherapy. Drug combinations were evaluated using 2D and 3D CRC cell line models and an ex vivo culture model of a patient-derived tumour. RESULTS: Quantitative proteomics identified upregulation of the mitosis-associated protein Aurora B (AURKB), within a network of upregulated proteins, in response to a 24 h 5-FU treatment. In CRC cell lines, AURKB inhibition with the dihydrogen phosphate prodrug AZD1152, markedly improved the potency of 5-FU in 2D and 3D in vitro CRC models. Sequential treatment with 5-FU then AZD1152 also enhanced the response of a patient-derived CRC cells to 5-FU in ex vivo cultures. CONCLUSIONS: AURKB inhibition may be a rational approach to augment the effectiveness of 5-FU chemotherapy in CRC.


Subject(s)
Colorectal Neoplasms , Fluorouracil , Organophosphates , Quinazolines , Humans , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Apoptosis , Aurora Kinase B/pharmacology , Aurora Kinase B/therapeutic use , Cell Line, Tumor , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm
3.
Semin Ophthalmol ; 39(4): 299-304, 2024 May.
Article in English | MEDLINE | ID: mdl-38078456

ABSTRACT

PURPOSE: To characterize demographics, academic characteristics, and research activity of academic glaucoma specialists. METHODS: Faculty demographic and academic data were recorded for glaucoma specialist faculty from 99 United States ophthalmology residency programs using institutional websites, Doximity, and LinkedIn. H-index was calculated using Scopus. Mean and weighted relative citation ratio (RCR), measuring research impact and productivity, respectively, was determined with the National Institute of Health iCite tool. RESULTS: Most academic glaucoma specialists were men (0.61), located in the Southern United States (0.316), and in practice for less than or equal to 10 years in 2023 (0.324). Twenty-six percent had additional professional degrees, and 11% completed fellowship training in addition to clinical glaucoma. Assistant professor was the most common academic appointment (0.479), and almost a quarter (0.23) had additional positions. Mean h-index (13.3), mean-RCR (1.76), and weighted-RCR (84.0) were consistent with high research productivity and impact. Gender comparison found that men had significantly higher h-index (p < .001), m-RCR (p = .007), w-RCR (p < .001) as compared to women. H-index (p < .001; p < .001; p < .001), m-RCR (p = .006; p < .001; p < .001), and w-RCR (p < .001; p < .001; p < .001) also increased with career duration, academic position, and additional academic appointments, respectively. Additional training was associated with higher h-index (p = .023) and w-RCR (p = .012), but not m-RCR (p = .699). CONCLUSION: Higher research activity is significantly associated with higher departmental positions and additional academic appointments. This illustrates the importance of research contributions for academic promotion. Variations in research activity by gender distribution may therefore affect opportunities for career advancement.


Subject(s)
Efficiency , Internship and Residency , Male , Humans , Female , United States , Bibliometrics , Research , Demography
4.
Biology (Basel) ; 12(11)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37998004

ABSTRACT

Human single-stranded DNA binding protein 1 (hSSB1) is critical to preserving genome stability, interacting with single-stranded DNA (ssDNA) through an oligonucleotide/oligosaccharide binding-fold. The depletion of hSSB1 in cell-line models leads to aberrant DNA repair and increased sensitivity to irradiation. hSSB1 is over-expressed in several types of cancers, suggesting that hSSB1 could be a novel therapeutic target in malignant disease. hSSB1 binding studies have focused on DNA; however, despite the availability of 3D structures, small molecules targeting hSSB1 have not been explored. Quinoline derivatives targeting hSSB1 were designed through a virtual fragment-based screening process, synthesizing them using AlphaLISA and EMSA to determine their affinity for hSSB1. In parallel, we further screened a structurally diverse compound library against hSSB1 using the same biochemical assays. Three compounds with nanomolar affinity for hSSB1 were identified, exhibiting cytotoxicity in an osteosarcoma cell line. To our knowledge, this is the first study to identify small molecules that modulate hSSB1 activity. Molecular dynamics simulations indicated that three of the compounds that were tested bound to the ssDNA-binding site of hSSB1, providing a framework for the further elucidation of inhibition mechanisms. These data suggest that small molecules can disrupt the interaction between hSSB1 and ssDNA, and may also affect the ability of cells to repair DNA damage. This test study of small molecules holds the potential to provide insights into fundamental biochemical questions regarding the OB-fold.

5.
Prostate ; 83(7): 628-640, 2023 05.
Article in English | MEDLINE | ID: mdl-36811381

ABSTRACT

BACKGROUND: Activation and regulation of androgen receptor (AR) signaling and the DNA damage response impact the prostate cancer (PCa) treatment modalities of androgen deprivation therapy (ADT) and radiotherapy. Here, we have evaluated a role for human single-strand binding protein 1 (hSSB1/NABP2) in modulation of the cellular response to androgens and ionizing radiation (IR). hSSB1 has defined roles in transcription and maintenance of genome stability, yet little is known about this protein in PCa. METHODS: We correlated hSSB1 with measures of genomic instability across available PCa cases from The Cancer Genome Atlas (TCGA). Microarray and subsequent pathway and transcription factor enrichment analysis were performed on LNCaP and DU145 prostate cancer cells. RESULTS: Our data demonstrate that hSSB1 expression in PCa correlates with measures of genomic instability including multigene signatures and genomic scars that are reflective of defects in the repair of DNA double-strand breaks via homologous recombination. In response to IR-induced DNA damage, we demonstrate that hSSB1 regulates cellular pathways that control cell cycle progression and the associated checkpoints. In keeping with a role for hSSB1 in transcription, our analysis revealed that hSSB1 negatively modulates p53 and RNA polymerase II transcription in PCa. Of relevance to PCa pathology, our findings highlight a transcriptional role for hSSB1 in regulating the androgen response. We identified that AR function is predicted to be impacted by hSSB1 depletion, whereby this protein is required to modulate AR gene activity in PCa. CONCLUSIONS: Our findings point to a key role for hSSB1 in mediating the cellular response to androgen and DNA damage via modulation of transcription. Exploiting hSSB1 in PCa might yield benefits as a strategy to ensure a durable response to ADT and/or radiotherapy and improved patient outcomes.


Subject(s)
DNA-Binding Proteins , Mitochondrial Proteins , Prostatic Neoplasms , Humans , Male , Androgen Antagonists/pharmacology , Androgens/metabolism , Cell Line, Tumor , DNA Damage , DNA Repair , DNA-Binding Proteins/metabolism , Genomic Instability , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Mitochondrial Proteins/metabolism
6.
Front Cell Dev Biol ; 10: 814160, 2022.
Article in English | MEDLINE | ID: mdl-36325362

ABSTRACT

Extracellular signaling proteins serve as neuronal growth cone guidance molecules during development and are well positioned to be involved in neuronal regeneration and recovery from injury. Semaphorins and their receptors, the plexins, are a family of conserved proteins involved in development that, in the nervous system, are axonal guidance cues mediating axon pathfinding and synapse formation. The Caenorhabditis elegans genome encodes for three semaphorins and two plexin receptors: the transmembrane semaphorins, SMP-1 and SMP-2, signal through their receptor, PLX-1, while the secreted semaphorin, MAB-20, signals through PLX-2. Here, we evaluate the locomotion behavior of knockout animals missing each of the semaphorins and plexins and the neuronal morphology of plexin knockout animals; we described the cellular expression pattern of the promoters of all plexins in the nervous system of C. elegans; and we evaluated their effect on the regrowth and reconnection of motoneuron neurites and the recovery of locomotion behavior following precise laser microsurgery. Regrowth and reconnection were more prevalent in the absence of each plexin, while recovery of locomotion surpassed regeneration in all genotypes.

7.
Recent Pat Nanotechnol ; 16(4): 271-282, 2022.
Article in English | MEDLINE | ID: mdl-34303335

ABSTRACT

BACKGROUND: Nanotechnology is the need of the hour! The design of nanotechnologyaided carriers as a tool for the delivery of low solubility molecules offers a potential platform to overcome the issues of current clinical treatment and achieve good targeted release and bioaccessibility. OBJECTIVE: Nanosponges (NS) encapsulate types of nanocarriers capable of carrying both lipophilic and hydrophilic substances. They are synthesized by mixing a solution of polyester, which is biodegradable, with cross-linkers. These tiny, porous structures are round-shaped, having multiple cavities wherein drugs can be housed to offer programmable release. METHODS: The detailed literature review and patent search summarize the ongoing research on NS. Substances such as poorly soluble drugs, nutraceuticals, gases, proteins and peptides, volatile oils, genetic material, etc., can be loaded on these novel carriers, which are characterized using various analytical techniques. Target-specific drug delivery and controlled drug release are the advantages offered by NS, along with a myriad of other promising applications. RESULTS: This review stresses the development of cyclodextrin-based NS, the synthetic methods and characterization of NS, along with factors affecting NS formation, their applications and information on the patented work in this area. NS are solid in character and can be formulated in various dosage forms, such as parenteral, topical, oral or inhalation. CONCLUSION: Therefore, owing to their promising benefits over other nanocarriers in terms of drug loading, adaptability, sustainability, solubility and tailored release profile, NS is an immediate technological revolution for drug entrapment and as novel drug carriers.The authors expect that these fundamental applications of NS could help the researchers to develop and gain insight about NS in novel drug delivery applications.


Subject(s)
Cyclodextrins , Patents as Topic , Cyclodextrins/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Solubility
8.
Cancers (Basel) ; 13(18)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34572879

ABSTRACT

Tyrosine kinase inhibitors (TKIs) are the first-line therapy for non-small-cell lung cancers (NSCLC) that harbour sensitising mutations within the epidermal growth factor receptor (EGFR). However, resistance remains a key issue, with tumour relapse likely to occur. We have previously identified that cell division cycle-associated protein 3 (CDCA3) is elevated in adenocarcinoma (LUAD) and correlates with sensitivity to platinum-based chemotherapy. Herein, we explored whether CDCA3 levels were associated with EGFR mutant LUAD and TKI response. We demonstrate that in a small-cohort tissue microarray and in vitro LUAD cell line panel, CDCA3 protein levels are elevated in EGFR mutant NSCLC as a result of increased protein stability downstream of receptor tyrosine kinase signalling. Here, CDCA3 protein levels correlated with TKI potency, whereby CDCA3high EGFR mutant NSCLC cells were most sensitive. Consistently, ectopic overexpression or inhibition of casein kinase 2 using CX-4945, which pharmacologically prevents CDCA3 degradation, upregulated CDCA3 levels and the response of T790M(+) H1975 cells and two models of acquired resistance to TKIs. Accordingly, it is possible that strategies to upregulate CDCA3 levels, particularly in CDCA3low tumours or upon the emergence of therapy resistance, might improve the response to EGFR TKIs and benefit patients.

9.
Commun Biol ; 4(1): 638, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34050247

ABSTRACT

Platinum-based chemotherapy remains the cornerstone of treatment for most non-small cell lung cancer (NSCLC) cases either as maintenance therapy or in combination with immunotherapy. However, resistance remains a primary issue. Our findings point to the possibility of exploiting levels of cell division cycle associated protein-3 (CDCA3) to improve response of NSCLC tumours to therapy. We demonstrate that in patients and in vitro analyses, CDCA3 levels correlate with measures of genome instability and platinum sensitivity, whereby CDCA3high tumours are sensitive to cisplatin and carboplatin. In NSCLC, CDCA3 protein levels are regulated by the ubiquitin ligase APC/C and cofactor Cdh1. Here, we identified that the degradation of CDCA3 is modulated by activity of casein kinase 2 (CK2) which promotes an interaction between CDCA3 and Cdh1. Supporting this, pharmacological inhibition of CK2 with CX-4945 disrupts CDCA3 degradation, elevating CDCA3 levels and increasing sensitivity to platinum agents. We propose that combining CK2 inhibitors with platinum-based chemotherapy could enhance platinum efficacy in CDCA3low NSCLC tumours and benefit patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm/genetics , Antigens, CD/metabolism , Biomarkers, Pharmacological/blood , Cadherins/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/metabolism , Cell Cycle/genetics , Cell Cycle Proteins/analysis , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Databases, Genetic , Drug Resistance, Neoplasm/physiology , Drug Therapy/methods , Genomic Instability/drug effects , Genomic Instability/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Platinum/therapeutic use
10.
Front Oncol ; 11: 615967, 2021.
Article in English | MEDLINE | ID: mdl-33777753

ABSTRACT

Platinum-based chemotherapy remains the cornerstone of treatment for most people with non-small cell lung cancer (NSCLC), either as adjuvant therapy in combination with a second cytotoxic agent or in combination with immunotherapy. Resistance to therapy, either in the form of primary refractory disease or evolutionary resistance, remains a significant issue in the treatment of NSCLC. Hence, predictive biomarkers and novel combinational strategies are required to improve the effectiveness and durability of treatment response 6for people with NSCLC. The aim of this study was to identify novel biomarkers and/or druggable proteins from deregulated protein networks within non-oncogene driven disease that are involved in the cellular response to cisplatin. Following exposure of NSCLC cells to cisplatin, in vitro quantitative mass spectrometry was applied to identify altered protein response networks. A total of 65 proteins were significantly deregulated following cisplatin exposure. These proteins were assessed to determine if they are druggable targets using novel machine learning approaches and to identify whether these proteins might serve as prognosticators of platinum therapy. Our data demonstrate novel candidates and drug-like molecules warranting further investigation to improve response to platinum agents in NSCLC.

11.
Front Oncol ; 11: 798296, 2021.
Article in English | MEDLINE | ID: mdl-35083152

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that has few effective treatment options due to its lack of targetable hormone receptors. Whilst the degree of tumour infiltrating lymphocytes (TILs) has been shown to associate with therapy response and prognosis, deeper characterization of the molecular diversity that may mediate chemotherapeutic response is lacking. Here we applied targeted proteomic analysis of both chemotherapy sensitive and resistant TNBC tissue samples by the Nanostring GeoMx Digital Spatial Platform (DSP). By quantifying 68 targets in the tumour and tumour microenvironment (TME) compartments and performing differential expression analysis between responsive and non-responsive tumours, we show that increased ER-alpha expression and decreased 4-1BB and MART1 within the stromal compartments is associated with adjuvant chemotherapy response. Similarly, higher expression of GZMA, STING and fibronectin and lower levels of CD80 were associated with response within tumour compartments. Univariate overall-survival (OS) analysis of stromal proteins supported these findings, with ER-alpha expression (HR=0.19, p=0.0012) associated with better OS while MART1 expression (HR=2.3, p=0.035) was indicative of poorer OS. Proteins within tumour compartments consistent with longer OS included PD-L1 (HR=0.53, p=0.023), FOXP3 (HR=0.5, p=0.026), GITR (HR=0.51, p=0.036), SMA (HR=0.59, p=0.043), while EPCAM (HR=1.7, p=0.045), and CD95 (HR=4.9, p=0.046) expression were associated with shorter OS. Our data provides early insights into the levels of these markers in the TNBC tumour microenvironment, and their association with chemotherapeutic response and patient survival.

12.
Int J Oncol ; 55(6): 1223-1236, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31638176

ABSTRACT

Recent evidence suggests that numerous long non­coding RNAs (lncRNAs) are dysregulated in cancer, and have critical roles in tumour development and progression. The present study investigated the ghrelin receptor antisense lncRNA growth hormone secretagogue receptor opposite strand (GHSROS) in breast cancer. Reverse transcription­quantitative polymerase chain reaction revealed that GHSROS expression was significantly upregulated in breast tumour tissues compared with normal breast tissue. Induced overexpression of GHSROS in the MDA­MB­231 breast cancer cell line significantly increased cell migration in vitro, without affecting cell proliferation, a finding similar to our previous study on lung cancer cell lines. Microarray analysis revealed a significant repression of a small cluster of major histocompatibility class II genes and enrichment of immune response pathways; this phenomenon may allow tumour cells to better evade the immune system. Ectopic overexpression of GHSROS in the MDA­MB­231 cell line significantly increased orthotopic xenograft growth in mice, suggesting that in vitro culture does not fully capture the function of this lncRNA. This study demonstrated that GHSROS may serve a relevant role in breast cancer. Further studies are warranted to explore the function and therapeutic potential of this lncRNA in breast cancer progression.


Subject(s)
Breast Neoplasms/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/metabolism , Animals , Apoptosis/genetics , Breast/pathology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Disease Progression , Down-Regulation , Female , Gene Expression Profiling , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Humans , MCF-7 Cells , Mice , Middle Aged , Oligonucleotide Array Sequence Analysis , Receptors, Ghrelin/genetics , Tumor Escape/genetics , Xenograft Model Antitumor Assays
14.
Endocrine ; 64(2): 393-405, 2019 05.
Article in English | MEDLINE | ID: mdl-30390209

ABSTRACT

PURPOSE: The ghrelin axis regulates many physiological functions (including appetite, metabolism, and energy balance) and plays a role in disease processes. As ghrelin stimulates prostate cancer proliferation, the ghrelin receptor antagonist [D-Lys3]-GHRP-6 is a potential treatment for castrate-resistant prostate cancer and for preventing the metabolic consequences of androgen-targeted therapies. We therefore explored the effect of [D-Lys3]-GHRP-6 on PC3 prostate cancer xenograft growth. METHODS: NOD/SCID mice with PC3 prostate cancer xenografts were administered 20 nmoles/mouse [D-Lys3]-GHRP-6 daily by intraperitoneal injection for 14 days and tumour volume and weight were measured. RNA sequencing of tumours was conducted to investigate expression changes following [D-Lys3]-GHRP-6 treatment. A second experiment, extending treatment time to 18 days and including a higher dose of [D-Lys3]-GHRP-6 (200 nmoles/mouse/day), was undertaken to ensure repeatability. RESULTS: We demonstrate here that daily intraperitoneal injection of 20 nmoles/mouse [D-Lys3]-GHRP-6 reduces PC3 prostate cancer xenograft tumour volume and weight in NOD/SCID mice at two weeks post treatment initiation. RNA-sequencing revealed reduced expression of epidermal growth factor receptor (EGFR) in these tumours. Further experiments demonstrated that the effects of [D-Lys3]-GHRP-6 are transitory and lost after 18 days of treatment. CONCLUSIONS: We show that [D-Lys3]-GHRP-6 has transitory effects on prostate xenograft tumours in mice, which rapidly develop an apparent resistance to the antagonist. Although further studies on [D-Lys3]-GHRP-6 are warranted, we suggest that daily treatment with the antagonist is not a suitable treatment for advanced prostate cancer.


Subject(s)
Cell Proliferation/drug effects , ErbB Receptors/genetics , Gene Expression/drug effects , Oligopeptides/pharmacology , Prostatic Neoplasms/pathology , Receptors, Ghrelin/antagonists & inhibitors , Animals , ErbB Receptors/metabolism , Heterografts , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , PC-3 Cells , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism
15.
PLoS One ; 13(11): e0198495, 2018.
Article in English | MEDLINE | ID: mdl-30458004

ABSTRACT

Ghrelin is a peptide hormone which, when acylated, regulates appetite, energy balance and a range of other biological processes. Ghrelin predominately circulates in its unacylated form (unacylated ghrelin; UAG). UAG has a number of functions independent of acylated ghrelin, including modulation of metabolic parameters and cancer progression. UAG has also been postulated to antagonise some of the metabolic effects of acyl-ghrelin, including its effects on glucose and insulin regulation. In this study, Rag1-/- mice with high-fat diet-induced obesity and hyperinsulinaemia were subcutaneously implanted with PC3 prostate cancer xenografts to investigate the effect of UAG treatment on metabolic parameters and xenograft growth. Daily intraperitoneal injection of 100 µg/kg UAG had no effect on xenograft tumour growth in mice fed normal rodent chow or 23% high-fat diet. UAG significantly improved glucose tolerance in host Rag1-/- mice on a high-fat diet, but did not significantly improve other metabolic parameters. We propose that UAG is not likely to be an effective treatment for prostate cancer, with or without associated metabolic syndrome.


Subject(s)
Ghrelin/pharmacology , Homeodomain Proteins/metabolism , Hyperinsulinism/complications , Obesity/complications , Prostatic Neoplasms/drug therapy , Animals , Blood Glucose , Cell Line, Tumor , Diet, High-Fat , Ghrelin/therapeutic use , Heterografts , Homeodomain Proteins/genetics , Humans , Hyperinsulinism/metabolism , Male , Mice , Mice, Knockout , Obesity/metabolism , Prostatic Neoplasms/complications , Prostatic Neoplasms/metabolism
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 190: 121-128, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-28922637

ABSTRACT

A critical investigation on the structure, electronic properties and optical activities of a series of transition metal doped porphyrins (TMP; TM=Fe, Co, Ni) in the light of infrared and Raman spectroscopy is performed, under density functional formalism. The structure and electronic properties are studied in terms of ionization potential, electron affinity, chemical hardness (η), binding energies of the transition metals (BETM) etc. The origin of the optical activities, especially the visibly active cobalt porphyrin is addressed through critical study on their infrared and Raman spectra. The information availed from the spectral analysis will certainly ease their possible synthesis and useful applications in the sensor and optoelectronic domains.

17.
Comput Biol Chem ; 72: 192-198, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29276009

ABSTRACT

A density functional theory based scrutiny is implemented on the structure, electronic, optical and thermodynamic properties of the Poly (Methyl MethAcrylate) polymers (PMMA or nMMA; n = 1-5). The quantum chemical descriptors, e.g. HOMO-LUMO gap, ionization potential, chemical hardness, binding energies etc. of the PMMA polymers provides the measure for the structural and electronic properties. The parameters polarizability (α) and hyperpolarizability (ß) provides information for the non-linear optical (NLO) properties of the polymers. The absorption range of the PMMA polymer in the electromagnetic radiation spectrum during its growth is assessed by the UltraViolet-Visible (UV-vis) optical absorption spectra. To gain further insight on the origin of stability during the polymerization process, we have simulated frontier molecular orbitals (FMOs) and various thermodynamic properties, viz., entropy (S), enthalpy (H) and Gibbs free energy (G).

18.
J Theor Biol ; 437: 251-260, 2018 01 21.
Article in English | MEDLINE | ID: mdl-29102643

ABSTRACT

Collective cell spreading takes place in spatially continuous environments, yet it is often modelled using discrete lattice-based approaches. Here, we use data from a series of cell proliferation assays, with a prostate cancer cell line, to calibrate a spatially continuous individual based model (IBM) of collective cell migration and proliferation. The IBM explicitly accounts for crowding effects by modifying the rate of movement, direction of movement, and the rate of proliferation by accounting for pair-wise interactions. Taking a Bayesian approach we estimate the free parameters in the IBM using rejection sampling on three separate, independent experimental data sets. Since the posterior distributions for each experiment are similar, we perform simulations with parameters sampled from a new posterior distribution generated by combining the three data sets. To explore the predictive power of the calibrated IBM, we forecast the evolution of a fourth experimental data set. Overall, we show how to calibrate a lattice-free IBM to experimental data, and our work highlights the importance of interactions between individuals. Despite great care taken to distribute cells as uniformly as possible experimentally, we find evidence of significant spatial clustering over short distances, suggesting that standard mean-field models could be inappropriate.


Subject(s)
Algorithms , Cell Movement/physiology , Cell Proliferation/physiology , Models, Biological , Bayes Theorem , Cell Line, Tumor , Computer Simulation , Humans , Time Factors
19.
Bull Math Biol ; 79(5): 1028-1050, 2017 05.
Article in English | MEDLINE | ID: mdl-28337676

ABSTRACT

Scratch assays are used to study how a population of cells re-colonises a vacant region on a two-dimensional substrate after a cell monolayer is scratched. These experiments are used in many applications including drug design for the treatment of cancer and chronic wounds. To provide insights into the mechanisms that drive scratch assays, solutions of continuum reaction-diffusion models have been calibrated to data from scratch assays. These models typically include a logistic source term to describe carrying capacity-limited proliferation; however, the choice of using a logistic source term is often made without examining whether it is valid. Here we study the proliferation of PC-3 prostate cancer cells in a scratch assay. All experimental results for the scratch assay are compared with equivalent results from a proliferation assay where the cell monolayer is not scratched. Visual inspection of the time evolution of the cell density away from the location of the scratch reveals a series of sigmoid curves that could be naively calibrated to the solution of the logistic growth model. However, careful analysis of the per capita growth rate as a function of density reveals several key differences between the proliferation of cells in scratch and proliferation assays. Our findings suggest that the logistic growth model is valid for the entire duration of the proliferation assay. On the other hand, guided by data, we suggest that there are two phases of proliferation in a scratch assay; at short time, we have a disturbance phase where proliferation is not logistic, and this is followed by a growth phase where proliferation appears to be logistic. These two phases are observed across a large number of experiments performed at different initial cell densities. Overall our study shows that simply calibrating the solution of a continuum model to a scratch assay might produce misleading parameter estimates, and this issue can be resolved by making a distinction between the disturbance and growth phases. Repeating our procedure for other scratch assays will provide insight into the roles of the disturbance and growth phases for different cell lines and scratch assays performed on different substrates.


Subject(s)
Cell Proliferation/physiology , Models, Biological , Cell Count , Cell Line, Tumor , Humans , Logistic Models , Male , Mathematical Concepts , Prostatic Neoplasms/pathology , Wound Healing/physiology
20.
Sci Rep ; 7(1): 491, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28352127

ABSTRACT

Hyperinsulinaemia, obesity and dyslipidaemia are independent and collective risk factors for many cancers. Here, the long-term effects of a 23% Western high-fat diet (HFD) in two immunodeficient mouse strains (NOD/SCID and Rag1 -/-) suitable for engraftment with human-derived tissue xenografts, and the effect of diet-induced hyperinsulinaemia on human prostate cancer cell line xenograft growth, were investigated. Rag1 -/-and NOD/SCID HFD-fed mice demonstrated diet-induced impairments in glucose tolerance at 16 and 23 weeks post weaning. Rag1 -/- mice developed significantly higher fasting insulin levels (2.16 ± 1.01 ng/ml, P = 0.01) and increased insulin resistance (6.70 ± 1.68 HOMA-IR, P = 0.01) compared to low-fat chow-fed mice (0.71 ± 0.12 ng/ml and 2.91 ± 0.42 HOMA-IR). This was not observed in the NOD/SCID strain. Hepatic steatosis was more extensive in Rag1 -/- HFD-fed mice compared to NOD/SCID mice. Intramyocellular lipid storage was increased in Rag1 -/- HFD-fed mice, but not in NOD/SCID mice. In Rag1 -/- HFD-fed mice, LNCaP xenograft tumours grew more rapidly compared to low-fat chow-fed mice. This is the first characterisation of the metabolic effects of long-term Western HFD in two mouse strains suitable for xenograft studies. We conclude that Rag1 -/- mice are an appropriate and novel xenograft model for studying the relationship between cancer and hyperinsulinaemia.


Subject(s)
Disease Models, Animal , Disease Susceptibility , Hyperinsulinism/etiology , Hyperinsulinism/metabolism , Adipose Tissue/metabolism , Animals , Blood Glucose , Body Weight , Diet, High-Fat , Female , Heterografts , Homeodomain Proteins/genetics , Humans , Hyperinsulinism/immunology , Insulin/blood , Insulin/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Muscle, Skeletal/metabolism , Organ Specificity , Pancreas/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...