Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Xray Sci Technol ; 26(4): 535-551, 2018.
Article in English | MEDLINE | ID: mdl-29689765

ABSTRACT

Hounsfield Units (HU) are used clinically in differentiating tissue types in a reconstructed CT image, and therefore the HU accuracy of a system is important, especially when using multiple sources, novel detector and non-traditional trajectories. Dedicated clinical breast CT (BCT) systems therefore should be similarly evaluated. In this study, uniform cylindrical phantoms filled with various uniform density fluids were used to characterize differences in HU values between simple circular and complex 3D (saddle) orbits. Based on ACR recommendations, the HU accuracy, center-to-edge variability within a slice, and overall variability within the reconstructed volume were characterized for simple and complex acquisitions possible on a single versatile BCT system. Results illustrate the statistically significantly better performance of the saddle orbit, especially close to the chest and nipple regions of what would clinically be a pendant breast volume. The incomplete cone beam acquisition of a simple circular orbit causes shading artifacts near the nipple, due to insufficient sampling, rendering a major portion of the scanned phantom unusable, whereas the saddle orbit performs exceptionally well and provides a tighter distribution of HU values throughout the reconstructed volumes. This study further establishes the advantages of using 3D acquisition trajectories for breast CT as well as other applications by demonstrating the robustness of HU values throughout large reconstructed volumes.


Subject(s)
Breast/diagnostic imaging , Imaging, Three-Dimensional/methods , Mammography/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Algorithms , Female , Humans , Phantoms, Imaging
2.
J Med Imaging (Bellingham) ; 4(3): 033502, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28924570

ABSTRACT

Stand-alone cone beam computed tomography (CT) and single-photon emission computed tomography (SPECT) systems capable of complex acquisition trajectories have previously been developed for breast imaging. Fully three-dimensional (3-D) motions of SPECT systems provide views into the chest wall and throughout the entire volume. The polar tilting capability of the CBCT system has shown improvement in sampling close to the chest wall, while eliminating cone beam artifacts. Here, a single hybrid SPECT-CT system, with each individual modality capable of independently traversing complex trajectories around a common pendant breast volume, was developed. We present the practical implementation of this design and preliminary results of the CT system. The fully 3-D SPECT was nested inside the suspended CT gantry and oriented perpendicular to the CT source-detector pair. Both subsystems were positioned on a rotation stage, with the combined polar and azimuthal motions enabling spherical trajectories. Six trajectories were used for initial evaluation of the tilt capable CT system. The developed system can achieve polar tilt angles with a [Formula: see text] positioning error and no hysteresis. Initial imaging results demonstrate that additional off-axis projection views of various geometric resolution phantoms facilitate more complete sampling, more consistent attenuation value recovery, and markedly improved reconstructions. This system could have various applications in diagnostic or therapeutic breast imaging.

3.
J Xray Sci Technol ; 25(3): 373-389, 2017.
Article in English | MEDLINE | ID: mdl-28157120

ABSTRACT

OBJECTIVE: The purpose of this study was to utilize a dedicated breast CT system using a 2D beam stop array to physically evaluate the scatter to primary ratios (SPRs) of different geometric phantoms and prospectively acquired clinical patient data. METHODS: Including clinically unrealizable compositions of 100% glandular and 100% fat, projection images were acquired using three geometrically different phantoms filled with fluids simulating breast tissue. The beam stop array method was used for measuring scatter in projection space, and creating the scatter corrected primary images. 2D SPRs were calculated. Additionally, a new figure of merit, the 3D normalized scatter contribution (NSC) volumes were calculated. RESULTS: The 2D SPR values (0.52-1.10) were primarily dependent on phantom geometry; a secondary dependence was due to their uniform density; 2D SPRs were low frequency and smoothly varying in the uniformly filled phantoms. SPRs of clinical patient data followed similar trends as phantoms, but with noticeable deviations and high frequency components due to the heterogeneous distribution of glandular tissue. The maximum measured patient 2D SPRs were all <0.6, even for the largest diameter breast. These results demonstrate modest scatter components with changing object geometries and densities; the 3D NSC volumes with higher frequency components help visualize scatter distribution throughout the reconstructed image volumes. Furthermore, the SPRs in the heterogeneous clinical breast cases were underestimated by the equivalent density, uniformly filled phantoms. CONCLUSIONS: These results provide guidance on the use of uniformly distributed density and differently shaped phantoms when considering simulations. They also clearly demonstrate that results from patients can vary considerably from 2D SPRs of uniformly simulated phantoms.


Subject(s)
Image Processing, Computer-Assisted/methods , Mammography/methods , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Algorithms , Humans , Scattering, Radiation , X-Rays
4.
Med Phys ; 42(8): 4497-510, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26233179

ABSTRACT

PURPOSE: A novel breast CT system capable of arbitrary 3D trajectories has been developed to address cone beam sampling insufficiency as well as to image further into the patient's chest wall. The purpose of this study was to characterize any trajectory-related differences in 3D x-ray dose distribution in a pendant target when imaged with different orbits. METHODS: Two acquisition trajectories were evaluated: circular azimuthal (no-tilt) and sinusoidal (saddle) orbit with ±15° tilts around a pendant breast, using Monte Carlo simulations as well as physical measurements. Simulations were performed with tungsten (W) filtration of a W-anode source; the simulated source flux was normalized to the measured exposure of a W-anode source. A water-filled cylindrical phantom was divided into 1 cm(3) voxels, and the cumulative energy deposited was tracked in each voxel. Energy deposited per voxel was converted to dose, yielding the 3D distributed dose volumes. Additionally, three cylindrical phantoms of different diameters (10, 12.5, and 15 cm) and an anthropomorphic breast phantom, initially filled with water (mimicking pure fibroglandular tissue) and then with a 75% methanol-25% water mixture (mimicking 50-50 fibroglandular-adipose tissues), were used to simulate the pendant breast geometry and scanned on the physical system. Ionization chamber calibrated radiochromic film was used to determine the dose delivered in a 2D plane through the center of the volume for a fully 3D CT scan using the different orbits. RESULTS: Measured experimental results for the same exposure indicated that the mean dose measured throughout the central slice for different diameters ranged from 3.93 to 5.28 mGy, with the lowest average dose measured on the largest cylinder with water mimicking a homogeneously fibroglandular breast. These results align well with the cylinder phantom Monte Carlo studies which also showed a marginal difference in dose delivered by a saddle trajectory in the central slice. Regardless of phantom material or filled fluid density, dose delivered by the saddle scan was negligibly different than the simple circular, no-tilt scans. The average dose measured in the breast phantom was marginally higher for saddle than the circular no tilt scan at 3.82 and 3.87 mGy, respectively. CONCLUSIONS: Not only does nontraditional 3D-trajectory CT scanning yield more complete sampling of the breast volume but also has comparable dose deposition throughout the breast and anterior chest volume, as verified by Monte Carlo simulation and physical measurements.


Subject(s)
Cone-Beam Computed Tomography/methods , Imaging, Three-Dimensional/methods , Mammography/methods , Biomarkers, Pharmacological , Computer Simulation , Cone-Beam Computed Tomography/instrumentation , Imaging, Three-Dimensional/instrumentation , Mammography/instrumentation , Models, Biological , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage , Tungsten , Water
5.
J Oncol ; 2012: 146943, 2012.
Article in English | MEDLINE | ID: mdl-22956950

ABSTRACT

A pilot study is underway to quantify in vivo the uptake and distribution of Tc-99m Sestamibi in subjects without previous history of breast cancer using a dedicated SPECT-CT breast imaging system. Subjects undergoing diagnostic parathyroid imaging studies were consented and imaged as part of this IRB-approved breast imaging study. For each of the seven subjects, one randomly selected breast was imaged prone-pendant using the dedicated, compact breast SPECT-CT system underneath the shielded patient support. Iteratively reconstructed and attenuation and/or scatter corrected images were coregistered; CT images were segmented into glandular and fatty tissue by three different methods; the average concentration of Sestamibi was determined from the SPECT data using the CT-based segmentation and previously established quantification techniques. Very minor differences between the segmentation methods were observed, and the results indicate an average image-based in vivo Sestamibi concentration of 0.10 ± 0.16 µCi/mL with no preferential uptake by glandular or fatty tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...