Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(36): 86189-86201, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37402048

ABSTRACT

Heavy metals are environmental pollutants and carcinogenic for human health if ingested. In developing countries, including Pakistan, untreated sewerage water is one of the major sources of irrigation for vegetable production in the vicinities of urban areas which might be toxic to human health due to heavy metals contamination. The present study was conducted to investigate the uptake of heavy metals by sewage water application and its impact on human health. The experiment consisted of five vegetable crops (Raphanus sativus L, Daucus carota, Brassica rapa, Spinacia oleracea, and Trigonella foenum-graecum L.) and two irrigation sources (clean water irrigation and sewage water irrigation). Each treatment was three time replicated for all five vegetables, and standard agronomic practices were applied. The results demonstrated that shoot and root growth in radish, carrot, turnip, spinach, and fenugreek was enhanced significantly with sewerage water, probably due to enhanced organic matter. However, pithiness was observed in the root of radish under sewerage water treatment. Very high concentrations of Cd, up to 7.08 ppm in turnip roots while up to 5.10 ppm in fenugreek shoot, were observed, and other vegetables also contained higher concentrations of Cd. Zn concentrations in the edible parts of carrot (control (C) = 129.17 ppm, sewerage (S) = 164.10 ppm), radish (C = 173.73 ppm, S = 253.03), turnip (C = 109.77 ppm, S = 149.67 ppm), and fenugreek (C = 131.87 ppm, S = 186.36 ppm) were increased by sewerage water treatment but a decrease in Zn concentration in spinach (C = 262.17 ppm, S = 226.97 ppm) was observed. Fe concentration in edible parts of carrot (C = 888.00 ppm, S = 524.80 ppm), radish (C = 139.69 ppm, S = 123.60 ppm), turnip (C = 195.00 ppm, S = 121.37 ppm), and fenugreek (C = 1054.93 ppm, S = 461.77 ppm) were also decreased by sewerage water treatment while spinach leaves had accumulated higher Fe (C = 1560.33 ppm, S = 1682.67 ppm) in sewerage water treatment. The highest bioaccumulation factor value was 4.17 for Cd in carrots irrigated with sewerage water. The maximum value of bioconcentration factor was 3.11 for Cd in turnip under control, and the highest value of translocation factor was 4.82 in fenugreek irrigated with sewerage water. Daily intake of metals and health risk index (HRI) calculation indicated that HRI for Cd was more than 1, suggesting toxicity in these vegetables while HRI for Fe and Zn is still under safe limit. Correlation analysis among different traits of all vegetables under both treatments revealed valuable information for selecting traits in the next crop breeding programs. It is concluded that untreated sewerage-irrigated vegetables, highly contaminated with Cd, are potentially toxic for human consumption and should be banned in Pakistan. Furthermore, it is suggested that the sewerage water should be treated to eliminate toxic compounds, particularly Cd, before irrigation usage and non-edible/phytoremediation crops might be grown in contaminated soils.


Subject(s)
Metals, Heavy , Raphanus , Soil Pollutants , Humans , Sewage/analysis , Vegetables , Cadmium/analysis , Environmental Monitoring , Agricultural Irrigation/methods , Soil Pollutants/analysis , Plant Breeding , Metals, Heavy/analysis , Risk Assessment , Soil
2.
Physiol Plant ; 171(4): 483-501, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32270877

ABSTRACT

The detoxification efflux carriers (DTX)/multidrug and toxic compound extrusion (MATE) transporters encompass an ancient gene family of secondary transporters involved in the process of plant detoxification. A genome-wide analysis of these transporters was carried out in order to better understand the transport of secondary metabolites in flaxseed genome (Linum usitassimum). A total of 73 genes coding for DTX/MATE transporters were identified. Gene structure, protein domain and motif organization were found to be notably conserved over the distinct phylogenetic groups, showing the evolutionary significant role of each class. Gene ontology (GO) annotation revealed a link to transporter activities, response to stimulus and localizations. The presence of various hormone and stress-responsive cis-regulatory elements in promoter regions could be directly correlated with the alteration of their transcripts. Tertiary structure showed conservation for pore size and constrains in the pore, which indicate their involvement in the exclusion of toxic substances from the cell. MicroRNA target analysis revealed that LuDTXs genes were targeted by different classes of miRNA families. Twelve LuDTX genes were chosen for further quantitative real-time polymerase chain reaction analysis in response to cold, salinity and cadmium stress at 0, 6, 12 and 24 hours after treatment. Altogether, the identified members of the DTX gene family, their expression profile, phylogenetic and miRNAs analysis might provide opportunities for future functional validation of this important gene family in flax.


Subject(s)
Flax , Flax/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant/genetics , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
3.
Front Plant Sci ; 11: 547133, 2020.
Article in English | MEDLINE | ID: mdl-33193479

ABSTRACT

Two oilseed rape genotypes (Jiu-Er-13XI and Zheyou-50), differing in seed oil content, were subjected to cadmium (Cd) stress in hydroponic experiment. Genotypic differences were observed in terms of tolerance to Cd exposure. Cd treatment negatively affected both genotypes, but the effects were more devastating in Jiu-Er-13XI (low seed oil content) than in Zheyou-50 (high seed oil content). Jiu-Er-13XI accumulated more reactive oxygen species (ROS), which destroyed chloroplast structure and decreased photosynthetic pigments, than Zheyou-50. Total fatty acids, especially 18:2 and 18:3, severely decreased as suggested by increase in MDA content. Roots and shoots of Jiu-Er-13XI plants accumulated more Cd content, while less amount of tocopherol (Toc) was observed under Cd stress, than Zheyou-50. Conversely, Zheyou-50 was less affected by Cd stress than its counterpart. It accumulated comparatively less amount of Cd in roots and shoots, along with reduced accumulation of malondialdehyde (MDA) and ROS under Cd stress, than Jiu-Er-13XI. Further, the level of Toc, especially α-Tocopherol, was much higher in Zheyou-50 than in Jiu-Er-13XI, which was also supported by high expression of Toc biosynthesis genes in Zheyou-50 during early hours. Toc not only restricted the absorption of Cd by roots and its translocation to shoot but also scavenged the ROS generated during oxidative stresses. The low level of MDA shows that polyunsaturated fatty acids in chloroplast membranes remained intact. In the present study the tolerance of Zheyou-50 to Cd stress, over Jiu-Er-13XI, is attributed to the activities of Toc. This study shows that plants with high seed oil content are tolerant to Cd stress due to high production of Toc.

4.
Physiol Mol Biol Plants ; 25(6): 1435-1444, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31736546

ABSTRACT

To curb the increasing demand for nitrogenous fertilizers, it is imperative to develop new cultivars with comparatively greater nitrogen use efficiency (NUE). Nonetheless, so far very meager information is available concerning the variances among barley (Hordeum vulgare L.) varieties for their response to nitrogen deprivation. The current study was carried out to explore the potential of barley genotypes for higher NUE. A hydroponic experiment was conducted at seedling stage to compare the performance of four barley genotypes, ZD9 and XZ149 (with higher NUE) and HXRL and XZ56 (with lower NUE) in response to low (0.1 mM) and normal nitrogen (2 mM) levels. Under low N, all the genotypes expressed less number of tillers, decreased soluble proteins, chlorophyll and N concentrations in both roots and shoots, in comparison with normal N supply. However, significant differences were found among the genotypes. The genotypes with high NUE (ZD9 and XZ149) showed higher N concentration, increased number of tillers, improved chlorophyll and soluble proteins in both roots and shoots as compared to the inefficient ones (HXRL and XZ56). Furthermore, nitrate transporter gene (NRT2.1) showed higher expression under low N, both in roots and leaves of N efficient genotypes, as compared to the N inefficient ones. However, N assimilatory genes (GS1 and GS2) showed higher expression under normal and low N level, in leaves and roots respectively. The outcome of the study revealed that genotypes with higher NUE (ZD9 and XZ149) performed better under reduced N supply, and may require relatively less N fertilizer for normal growth and development, as compared to those with lower NUE. The study also revealed a time-specific expression pattern of studied genes, indicating the duration of low N stress. The current study suggested that future work must involve the time course as a key factor while studying expression patterns of these genes to better understand the genetic basis of low-N tolerance.

5.
Antioxidants (Basel) ; 8(11)2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31731425

ABSTRACT

Effect of high temperature (HT) on anthocyanin (ANS) accumulation and its relationship with reactive oxygen species (ROS) generation in color rice kernel was investigated by using a black kernel mutant (9311bk) and its wildtype (WT). 9311bk showed strikingly higher ANS content in the kernel than WT. Just like the starch accumulation in rice kernels, ANS accumulation in the 9311bk kernel increased progressively along with kernel development, with the highest level of ANS at kernel maturity. HT exposure evidently decreased ANS accumulation in 9311bk kernel, but it increased ROS and MDA concentrations. The extent of HT-induced decline in kernel starch accumulation was genotype-dependent, which was much larger for WT than 9311bk. Under HT exposure, 9311bk had a relatively lower increase in ROS and MDA contents than its WT. This occurrence was just opposite to the genotype-dependent alteration in the activities of antioxidant enzymes (SOD, CAT and APX) in response to HT exposure, suggesting more efficiently ROS detoxification and relatively stronger heat tolerance for 9311bk than its WT. Hence, the extent of HT-induced declines in grain weight and kernel starch content was much smaller for 9311bk relative to its WT. HT exposure suppressed the transcripts of OsCHS, OsF3'H, OsDFR and OsANS and impaired the ANS biosynthesis in rice kernel, which was strongly responsible for HT-induced decline in the accumulation of ANS, C3G, and P3G in 9311bk kernels. These results could provide valuable information to cope with global warming and achieving high quality for color rice production.

6.
BMC Plant Biol ; 16: 30, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26817455

ABSTRACT

BACKGROUND: Nitrogen (N) is the most common limiting factor for crop productivity worldwide. An effective approach to solve N deficiency is to develop low N (LN) tolerant crop cultivars. Tibetan annual wild barley is well-known for its wide genetic diversity and high tolerance to poor soil fertility. Up to date, no study has been done to illustrate the mechanism of LN tolerance underlying the wild barley at transcriptional level. RESULTS: In this study, we employed Illumina RNA-Sequencing to determine the genotypic difference in transcriptome profile using two Tibetan wild barley genotypes differing in LN tolerance (XZ149, tolerant and XZ56, sensitive). A total of 1469 differentially expressed genes (DEGs) were identified in the two genotypes at 6 h and 48 h after LN treatment. Genetic difference existed in DEGs between XZ149 and XZ56, including transporters, transcription factors (TFs), kinases, antioxidant stress and hormone signaling related genes. Meanwhile, 695 LN tolerance-associated DEGs were mainly mapped to amino acid metabolism, starch and sucrose metabolism and secondary metabolism, and involved in transporter activity, antioxidant activities, and other gene ontology (GO). XZ149 had a higher capability of N absorption and use efficiency under LN stress than XZ56. The higher expression of nitrate transporters and energy-saving assimilation pattern could be attributed to its more N uptake and higher LN tolerance. In addition, auxin (IAA) and ethylene (ETH) response pathways may be also related to the genotypic difference in LN tolerance. CONCLUSION: The responses of XZ149 and XZ56 to LN stress differed dramatically at transcriptional level. The identified candidate genes related to LN tolerance may provide new insights into comprehensive understanding of the genotypic difference in N utilization and LN tolerance.


Subject(s)
Crops, Agricultural/genetics , Genes, Plant , Hordeum/genetics , Gene Expression Profiling , Genotype , Hordeum/growth & development , Hordeum/metabolism , Nitrogen/metabolism , Stress, Physiological , Tibet
SELECTION OF CITATIONS
SEARCH DETAIL
...