Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 111(36): 8823-8, 2007 Sep 13.
Article in English | MEDLINE | ID: mdl-17705354

ABSTRACT

A site-selectivity model, based on the Fukui function as a local reactivity descriptor, has been applied to 1,2-disubstituted pyridinium ions incorporating two competing sites of similar reactivity, i.e., 1-methylene and 2-methylene, which may undergo deprotonation depending on the nature of substituent present on these moieties. Applicability of the local HSAB rule, in context with the Li-Evans' generalized HSAB principle suggesting the hard-hard interactions to be controlled by minimum Fukui function, has been illustrated. Global and local reactivity descriptors have been computed by carrying out DFT calculations at B3LYP/6-31++G** level using Mulliken and NPA methods for charge analysis. A comparison with the calculated deprotonation energies involving two sites indicates that the observed site selectivity in differently substituted pyridinium ions is better explained by the Li-Evans rule of minimum Fukui function for hard-hard interactions.

2.
J Org Chem ; 71(4): 1344-50, 2006 Feb 17.
Article in English | MEDLINE | ID: mdl-16468781

ABSTRACT

A systematic density functional theory level investigation of differently substituted pyridinium methylides was carried out to determine the role of C(ylidic) lone-pair-associated hyperconjugative and negative hyperconjugative interactions in deciding conformational preferences. Deviation from the coplanar orientation of the carbanionic center with the pyridine ring and its substituent dependence has been found to correlate well with the relative opportunities for conjugative and negative hyperconjugative interactions of a ylidic moiety with different substituent groups present at the ylidic carbon. The contribution of individual n-->pi* conjugative, n-->sigma* negative hyperconjugative, and sigma-->pi* hyperconjugative interactions in a particular conformation of pyridinium dichlorophosphinomethylides was assessed from donor-acceptor stabilization energies, as obtained from natural bond orbital (NBO) analysis. The relative extent of conjugative and negative hyperconjugative interactions with the substituents present at the ylidic carbon plays an important role in permitting the delocalization of ylidic charge into the pyridine ring, thereby controlling the relative orientation of the latter with the carbanionic plane.

3.
Mol Cell Neurosci ; 22(1): 118-32, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12595244

ABSTRACT

We have analyzed signaling pathways involved in neurotrophic factor (NTF)-induced upregulation of nociceptive properties, specifically vanilloid receptor type 1 (VR1), by adult rat dorsal root ganglion neurons. Upregulation of VR1 by nerve growth factor and glial cell line-derived neurotrophic factor is partially blocked by a MEK inhibitor. Dominant negative Ras, but not Rap, blocks NTF-induced ERK activation and VR1 upregulation. Activated Ras mimics NTF-mediated induction of VR1 in dorsal root ganglion neurons. An inhibitor of phosphatidylinositol 3-kinase, LY294002, also inhibited NTF-induced VR1 upregulation. However, this may at least in part be due to a block of NTF-induced ERK activation. Constitutive simultaneous stimulation of both ERK and phosphatidylinositol 3-kinase is not sufficient for VR1 upregulation. Together, the data suggest that VR1 expression by dorsal root ganglion neurons is regulated by common Ras-dependent pathways.


Subject(s)
Ganglia, Spinal/metabolism , Nerve Growth Factors/metabolism , Neurons, Afferent/metabolism , Nociceptors/metabolism , Receptors, Drug/metabolism , Up-Regulation/physiology , ras Proteins/metabolism , Animals , Capsaicin/pharmacology , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Enzyme Inhibitors/pharmacology , Ganglia, Spinal/cytology , Ganglia, Spinal/drug effects , Glial Cell Line-Derived Neurotrophic Factor , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Nerve Growth Factors/pharmacology , Neurons, Afferent/cytology , Neurons, Afferent/drug effects , Nociceptors/cytology , Nociceptors/drug effects , Pain/metabolism , Pain/physiopathology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Drug/drug effects , Up-Regulation/drug effects
4.
Neuropharmacology ; 43(3): 450-6, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12243775

ABSTRACT

We have cloned a guinea pig Vanilloid receptor 1 (VR1) from a dorsal root ganglion cDNA library and expressed it in CHO cells. The receptor has been functionally characterized by measuring changes in intracellular calcium produced by capsaicin, low pH and noxious heat. Capsaicin produced a concentration-dependent increase in intracellular calcium in guinea pig VR1-CHO cells with an estimated EC(50) of 0.17 +/- 0.0065 micro M, similar to that previously reported for rat and human VR1. Olvanil and resiniferatoxin were also effective agonists (EC(50) values of 0.0087 +/- 0.0035 micro M and 0.067 +/- 0.014 micro M, respectively), but 12-phenylacetate 13-acetate 20-homovanillate (PPAHV) and anandamide showed little agonist activity up to 10 micro M. As with human and rat VR1, guinea pig VR1 was also activated by pH below 6.0 and by noxious heat (>42 degrees C). Capsazepine acted as an antagonist of capsaicin responses in guinea pig VR1-CHO cells (IC(50) of 0.324 +/- 0.041 micro M ), as seen at rat VR1. However, in contrast to its lack of activity against pH and heat responses at rat VR1, capsazepine was an effective antagonist of these responses at guinea pig VR1. Capsazepine displayed an IC(50) of 0.355 +/- 25 micro M against pH 5.5, and provided complete blockade of heat responses at 1 micro M. Thus, capsazepine can significantly inhibit calcium influx due to heat and pH 5.5 at guinea pig VR1 and human VR1 but is inactive against these activators at rat VR1.


Subject(s)
Capsaicin/analogs & derivatives , Receptors, Drug/genetics , Aequorin/metabolism , Amino Acid Sequence , Animals , CHO Cells , Calcium/metabolism , Capsaicin/pharmacology , Chronic Disease , Cloning, Molecular , Cricetinae , Fluorescent Dyes , Fura-2 , Guinea Pigs , Heart , Hydrogen-Ion Concentration , Luminescent Measurements , Molecular Sequence Data , Pain/drug therapy , Rats , Receptors, Drug/agonists , Receptors, Drug/antagonists & inhibitors , TRPV Cation Channels
SELECTION OF CITATIONS
SEARCH DETAIL
...