Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 1503, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35314684

ABSTRACT

Although reprogramming of cellular metabolism is a hallmark of cancer, little is known about how metabolic reprogramming contributes to early stages of transformation. Here, we show that the histone deacetylase SIRT6 regulates tumor initiation during intestinal cancer by controlling glucose metabolism. Loss of SIRT6 results in an increase in the number of intestinal stem cells (ISCs), which translates into enhanced tumor initiating potential in APCmin mice. By tracking down the connection between glucose metabolism and tumor initiation, we find a metabolic compartmentalization within the intestinal epithelium and adenomas, where a rare population of cells exhibit features of Warburg-like metabolism characterized by high pyruvate dehydrogenase kinase (PDK) activity. Our results show that these cells are quiescent cells expressing +4 ISCs and enteroendocrine markers. Active glycolysis in these cells suppresses ROS accumulation and enhances their stem cell and tumorigenic potential. Our studies reveal that aerobic glycolysis represents a heterogeneous feature of cancer, and indicate that this metabolic adaptation can occur in non-dividing cells, suggesting a role for the Warburg effect beyond biomass production in tumors.


Subject(s)
Neoplasms , Sirtuins , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Glycolysis/physiology , Intestines/pathology , Mice , Neoplasms/pathology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Sirtuins/metabolism
2.
Nat Commun ; 13(1): 261, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017529

ABSTRACT

Enteroendocrine (EE) cells are the most abundant hormone-producing cells in humans and are critical regulators of energy homeostasis and gastrointestinal function. Challenges in converting human intestinal stem cells (ISCs) into functional EE cells, ex vivo, have limited progress in elucidating their role in disease pathogenesis and in harnessing their therapeutic potential. To address this, we employed small molecule targeting of the endocannabinoid receptor signaling pathway, JNK, and FOXO1, known to mediate endodermal development and/or hormone production, together with directed differentiation of human ISCs from the duodenum and rectum. We observed marked induction of EE cell differentiation and gut-derived expression and secretion of SST, 5HT, GIP, CCK, GLP-1 and PYY upon treatment with various combinations of three small molecules: rimonabant, SP600125 and AS1842856. Robust differentiation strategies capable of driving human EE cell differentiation is a critical step towards understanding these essential cells and the development of cell-based therapeutics.


Subject(s)
Cell Differentiation/drug effects , Cell Differentiation/physiology , Enteroendocrine Cells/drug effects , Enteroendocrine Cells/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Anthracenes/pharmacology , Chromogranin A/metabolism , Endocannabinoids/pharmacology , Glucagon-Like Peptide 1/metabolism , Humans , Intestinal Mucosa/metabolism , Peptide YY/metabolism , Quinolones/pharmacology , Rimonabant/pharmacology , Signal Transduction , Somatostatin/metabolism , Transcription Factors/metabolism
3.
Stem Cells ; 39(3): 296-305, 2021 03.
Article in English | MEDLINE | ID: mdl-33438789

ABSTRACT

Skeletal progenitor/stem cells (SSCs) play a critical role in postnatal bone growth and maintenance. Telomerase (Tert) activity prevents cellular senescence and is required for maintenance of stem cells in self-renewing tissues. Here we investigated the role of mTert-expressing cells in postnatal mouse long bone and found that mTert expression is enriched at the time of adolescent bone growth. mTert-GFP+ cells were identified in regions known to house SSCs, including the metaphyseal stroma, growth plate, and the bone marrow. We also show that mTert-expressing cells are a distinct SSC population with enriched colony-forming capacity and contribute to multiple mesenchymal lineages, in vitro. In contrast, in vivo lineage-tracing studies identified mTert+ cells as osteochondral progenitors and contribute to the bone-forming cell pool during endochondral bone growth with a subset persisting into adulthood. Taken together, our results show that mTert expression is temporally regulated and marks SSCs during a discrete phase of transitional growth between rapid bone growth and maintenance.


Subject(s)
Epithelial Cells/metabolism , Stem Cells/metabolism , Telomerase/metabolism , Animals , Bone Marrow/metabolism , Cell Cycle/physiology , Cell Proliferation/physiology , Cellular Senescence/physiology , Mice
4.
Cell Rep ; 31(3): 107524, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32320669

ABSTRACT

Activating mutations in the canonical Wnt/ß-catenin pathway are key drivers of hyperplasia, the gateway for tumor development. In a wide range of tissues, this occurs primarily through enhanced effects on cellular proliferation. Whether additional mechanisms contribute to ß-catenin-driven hyperplasia remains unknown. The adrenal cortex is an ideal system in which to explore this question, as it undergoes hyperplasia following somatic ß-catenin gain-of-function (ßcat-GOF) mutations. Targeting ßcat-GOF to zona Glomerulosa (zG) cells leads to a progressive hyperplastic expansion in the absence of increased proliferation. Instead, we find that hyperplasia results from a functional block in the ability of zG cells to transdifferentiate into zona Fasciculata (zF) cells. Mechanistically, zG cells demonstrate an upregulation of Pde2a, an inhibitor of zF-specific cAMP/PKA signaling. Hyperplasia is further exacerbated by trophic factor stimulation leading to organomegaly. Together, these data indicate that ß-catenin drives adrenal hyperplasia through both proliferation-dependent and -independent mechanisms.


Subject(s)
Adrenal Hyperplasia, Congenital/metabolism , Adrenal Hyperplasia, Congenital/pathology , beta Catenin/metabolism , Adrenal Hyperplasia, Congenital/genetics , Animals , Cell Transdifferentiation/physiology , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , beta Catenin/genetics
5.
Nat Commun ; 11(1): 1680, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32245949

ABSTRACT

Rosettes are widely used in epithelial morphogenesis during embryonic development and organogenesis. However, their role in postnatal development and adult tissue maintenance remains largely unknown. Here, we show zona glomerulosa cells in the adult adrenal cortex organize into rosettes through adherens junction-mediated constriction, and that rosette formation underlies the maturation of adrenal glomerular structure postnatally. Using genetic mouse models, we show loss of ß-catenin results in disrupted adherens junctions, reduced rosette number, and dysmorphic glomeruli, whereas ß-catenin stabilization leads to increased adherens junction abundance, more rosettes, and glomerular expansion. Furthermore, we uncover numerous known regulators of epithelial morphogenesis enriched in ß-catenin-stabilized adrenals. Among these genes, we show Fgfr2 is required for adrenal rosette formation by regulating adherens junction abundance and aggregation. Together, our data provide an example of rosette-mediated postnatal tissue morphogenesis and a framework for studying the role of rosettes in adult zona glomerulosa tissue maintenance and function.


Subject(s)
Adherens Junctions/metabolism , Morphogenesis , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Zona Glomerulosa/growth & development , beta Catenin/metabolism , Adherens Junctions/genetics , Adherens Junctions/ultrastructure , Adrenal Gland Neoplasms/surgery , Animals , Animals, Newborn , Female , Humans , Male , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Receptor, Fibroblast Growth Factor, Type 2/genetics , Zona Glomerulosa/cytology , Zona Glomerulosa/metabolism , Zona Glomerulosa/ultrastructure , beta Catenin/genetics
6.
Am J Hum Genet ; 103(1): 131-137, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29909964

ABSTRACT

Homozygous nonsense mutations in WNT2B were identified in three individuals from two unrelated families with severe, neonatal-onset osmotic diarrhea after whole-exome sequencing was performed on trios from the two families. Intestinal biopsy samples from affected individuals were used for histology and immunofluorescence and to generate enteroids ex vivo. Histopathologic evaluation demonstrated chronic inflammatory changes in the stomach, duodenum, and colon. Immunofluorescence demonstrated diminished staining for OLFM4, a marker for intestinal stem cells (ISCs). The enteroids generated from WNT2B-deficient intestinal epithelium could not be expanded and did not survive passage. Addition of CHIR-99021 (a GSK3A and GSK3B inhibitor and activator of canonical WNT/ß-CATENIN signaling) could not rescue WNT2B-deficient enteroids. Addition of supplemental recombinant murine WNT2B was able to perpetuate small enteroids for multiple passages but failed to expand their number. Enteroids showed a 10-fold increase in the expression of LEF1 mRNA and a 100-fold reduction in TLR4 expression, compared with controls by quantitative RT-PCR, indicating alterations in canonical WNT and microbial pattern-recognition signaling. In summary, individuals with homozygous nonsense mutations in WNT2B demonstrate severe intestinal dysregulation associated with decreased ISC number and function, likely explaining their diarrheal phenotype. WNT2B deficiency should be considered for individuals with neonatal-onset diarrhea.


Subject(s)
Codon, Nonsense/genetics , Diarrhea/genetics , Glycoproteins/genetics , Wnt Proteins/genetics , Child , Child, Preschool , Female , Homozygote , Humans , Infant , Intestines/pathology , Male , RNA, Messenger/genetics , Signal Transduction/genetics , Stem Cells/pathology
7.
Stem Cell Reports ; 10(1): 17-26, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29276155

ABSTRACT

The intestinal epithelium serves as an essential barrier to the outside world and is maintained by functionally distinct populations of rapidly cycling intestinal stem cells (CBC ISCs) and slowly cycling, reserve ISCs (r-ISCs). Because disruptions in the epithelial barrier can result from pathological activation of the immune system, we sought to investigate the impact of inflammation on ISC behavior during the regenerative response. In a murine model of αCD3 antibody-induced small-intestinal inflammation, r-ISCs proved highly resistant to injury, while CBC ISCs underwent apoptosis. Moreover, r-ISCs were induced to proliferate and functionally contribute to intestinal regeneration. Further analysis revealed that the inflammatory cytokines interferon gamma and tumor necrosis factor alpha led to r-ISC activation in enteroid culture, which could be blocked by the JAK/STAT inhibitor, tofacitinib. These results highlight an important role for r-ISCs in response to acute intestinal inflammation and show that JAK/STAT-1 signaling is required for the r-ISC regenerative response.


Subject(s)
Enteritis/metabolism , Intestinal Mucosa/physiology , Intestine, Small/metabolism , Janus Kinases/metabolism , Regeneration , STAT1 Transcription Factor/metabolism , Signal Transduction , Stem Cells/metabolism , Acute Disease , Animals , Apoptosis/drug effects , Cytokines/metabolism , Enteritis/chemically induced , Enteritis/pathology , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Intestinal Mucosa/pathology , Intestine, Small/pathology , Janus Kinases/antagonists & inhibitors , Mice , Mice, Transgenic , Piperidines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , STAT1 Transcription Factor/antagonists & inhibitors , Stem Cells/pathology
8.
Dev Dyn ; 245(7): 718-26, 2016 07.
Article in English | MEDLINE | ID: mdl-27153394

ABSTRACT

The intestine's ability to recover from catastrophic injury requires quiescent intestinal stem cells (q-ISCs). While rapidly cycling (Lgr5+) crypt base columnar (CBC) ISCs normally maintain the intestine, they are highly sensitive to pathological injuries (irradiation, inflammation) and must be restored by q-ISCs to sustain intestinal homeostasis. Despite clear relevance to human health, virtually nothing is known regarding the factors that regulate q-ISCs. A comprehensive understanding of these mechanisms would likely lead to targeted new therapies with profound therapeutic implications for patients with gastrointestinal conditions. We briefly review the current state of the literature, highlighting homeostatic mechanisms important for q-ISC regulation, listing key questions in the field, and offer strategies to address them. Developmental Dynamics 245:718-726, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Intestinal Mucosa/metabolism , Intestines/cytology , Stem Cells/cytology , Stem Cells/metabolism , Animals , Homeostasis/genetics , Homeostasis/physiology , Humans , Models, Biological , Signal Transduction , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiology
9.
Cell Stem Cell ; 18(3): 410-21, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26908146

ABSTRACT

The gastrointestinal (GI) epithelium is a highly regenerative tissue with the potential to provide a renewable source of insulin(+) cells after undergoing cellular reprogramming. Here, we show that cells of the antral stomach have a previously unappreciated propensity for conversion into functional insulin-secreting cells. Native antral endocrine cells share a surprising degree of transcriptional similarity with pancreatic ß cells, and expression of ß cell reprogramming factors in vivo converts antral cells efficiently into insulin(+) cells with close molecular and functional similarity to ß cells. Induced GI insulin(+) cells can suppress hyperglycemia in a diabetic mouse model for at least 6 months and regenerate rapidly after ablation. Reprogramming of antral stomach cells assembled into bioengineered mini-organs in vitro yielded transplantable units that also suppressed hyperglycemia in diabetic mice, highlighting the potential for development of engineered stomach tissues as a renewable source of functional ß cells for glycemic control.


Subject(s)
Cellular Reprogramming Techniques , Cellular Reprogramming , Gastric Mucosa/metabolism , Insulin-Secreting Cells/metabolism , Animals , Gastric Mucosa/cytology , Gastric Mucosa/transplantation , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/transplantation , Mice
10.
Data Brief ; 6: 398-404, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26862588

ABSTRACT

With the identification of Lgr5 as a definitive marker for intestinal stem cells, we used the highly novel, recently described, Lgr5-EGFP-IRES-cre ER (T2) knock in mouse model. Mice were injected with azoxymethane (AOM, a colon carcinogen) or saline (control) and fed a chemo-protective diet containing n-3 fatty acids and fermentable fiber (n-3 PUFA+pectin) or a control diet (n-6 PUFA + cellulose). Single cells were isolated from colonic mucosa crypts and three discrete populations of cells were collected via fluorescence activated cell sorting (FACS): Lgr5(high) (stem cells), Lgr5(low) (daughter cells) and Lgr5(negative) (differentiated cells). microRNA profiling and RNA sequencing were performed from the same sample and analyzed. These data refer to 'Comparative effects of diet and carcinogen on microRNA expression in the stem cell niche of the mouse colonic crypt' (Shah et al., 2016) [5].

11.
J Physiol ; 594(17): 4805-13, 2016 09 01.
Article in English | MEDLINE | ID: mdl-26670741

ABSTRACT

Long-lived and self-renewing adult stem cells (SCs) are essential for homeostasis in a wide range of tissues and can include both rapidly cycling and quiescent (q)SC populations. Rapidly cycling SCs function principally during normal tissue maintenance and are highly sensitive to stress, whereas qSCs exit from their quiescent state in response to homeostatic imbalance and regenerative pressure. The regulatory mechanisms underlying the quiescent state include factors essential for cell cycle control, stress response and survival pathways, developmental signalling pathways, and post-transcriptional modulation. Here, we review these regulatory mechanisms citing observations from the intestine and other self-renewing tissues.


Subject(s)
Adult Stem Cells/physiology , Intestines/cytology , Animals , Autophagy , Cyclin-Dependent Kinase Inhibitor Proteins/physiology , DNA-Binding Proteins/physiology , PTEN Phosphohydrolase/physiology , Protein Kinases/physiology
12.
Biochim Biophys Acta ; 1862(1): 121-34, 2016 01.
Article in English | MEDLINE | ID: mdl-26493444

ABSTRACT

There is mounting evidence that noncoding microRNAs (miRNA) are modulated by select chemoprotective dietary agents. For example, recently we demonstrated that the unique combination of dietary fish oil (containing n-3 fatty acids) plus pectin (fermented to butyrate in the colon) (FPA) up-regulates a subset of putative tumor suppressor miRNAs in intestinal mucosa, and down-regulates their predicted target genes following carcinogen exposure as compared to control (corn oil plus cellulose (CCA)) diet. To further elucidate the biological effects of diet and carcinogen modulated miR's in the colon, we verified that miR-26b and miR-203 directly target PDE4B and TCF4, respectively. Since perturbations in adult stem cell dynamics are generally believed to represent an early step in colon tumorigenesis and to better understand how the colonic stem cell population responds to environmental factors such as diet and carcinogen, we additionally determined the effects of the chemoprotective FPA diet on miRNAs and mRNAs in colonic stem cells obtained from Lgr5-EGFP-IRES-creER(T2) knock-in mice. Following global miRNA profiling, 26 miRNAs (P<0.05) were differentially expressed in Lgr5(high) stem cells as compared to Lgr5(negative) differentiated cells. FPA treatment up-regulated miR-19b, miR-26b and miR-203 expression as compared to CCA specifically in Lgr5(high) cells. In contrast, in Lgr5(negative) cells, only miR-19b and its indirect target PTK2B were modulated by the FPA diet. These data indicate for the first time that select dietary cues can impact stem cell regulatory networks, in part, by modulating the steady-state levels of miRNAs. To our knowledge, this is the first study to utilize Lgr5(+) reporter mice to determine the impact of diet and carcinogen on miRNA expression in colonic stem cells and their progeny.


Subject(s)
Carcinogens , Colon/pathology , Colonic Neoplasms/genetics , Diet , Fatty Acids, Omega-3/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Stem Cell Niche , Animals , Carcinogens/metabolism , Carcinogens/toxicity , Colon/metabolism , Colonic Neoplasms/etiology , Colonic Neoplasms/pathology , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Focal Adhesion Kinase 2/genetics , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Mice , Protective Factors , Stem Cell Niche/drug effects , Transcription Factor 4/genetics
13.
Cell Rep ; 13(11): 2403-2411, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26686631

ABSTRACT

The cellular and molecular mechanisms underlying adaptive changes to physiological stress within the intestinal epithelium remain poorly understood. Here, we show that PTEN, a negative regulator of the PI3K→AKT→mTORC1-signaling pathway, is an important regulator of dormant intestinal stem cells (d-ISCs). Acute nutrient deprivation leads to transient PTEN phosphorylation within d-ISCs and a corresponding increase in their number. This release of PTEN inhibition renders d-ISCs functionally poised to contribute to the regenerative response during re-feeding via cell-autonomous activation of the PI3K→AKT→mTORC1 pathway. Consistent with its role in mediating cell survival, PTEN is required for d-ISC maintenance at baseline, and intestines lacking PTEN have diminished regenerative capacity after irradiation. Our results highlight a PTEN-dependent mechanism for d-ISC maintenance and further demonstrate the role of d-ISCs in the intestinal response to stress.


Subject(s)
Intestines/cytology , Nutritional Status , PTEN Phosphohydrolase/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Animals , Cell Proliferation , Female , Genes, Reporter , Intestines/pathology , Male , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multiprotein Complexes/metabolism , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Telomerase/genetics , Telomerase/metabolism
14.
Stem Cell Res ; 15(1): 165-71, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26079371

ABSTRACT

K-Ras is a monomeric GTPase that controls cellular and tissue homeostasis. Prior studies demonstrated that mutationally activated K-Ras (K-Ras(G12D)) signals through MEK to promote expansion and hyperproliferation of the highly mitotically active transit-amplifying cells (TACs) in the intestinal crypt. Its effect on normally quiescent stem cells was unknown, however. Here, we have used an H2B-Egfp transgenic system to demonstrate that K-Ras(G12D) accelerates the proliferative kinetics of quiescent intestinal stem cells. As in the TAC compartment, the effect of mutant K-Ras on the quiescent stem cell is dependent upon activation of MEK. Mutant K-Ras is also able to increase self-renewal potential of intestinal stem cells following damage. These results demonstrate that mutant K-Ras can influence intestinal homeostasis on multiple levels.


Subject(s)
Intestines/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , Stem Cells/pathology , Animals , Cell Proliferation , Dextran Sulfate , Green Fluorescent Proteins/metabolism , Intestinal Mucosa/metabolism , Mice, Transgenic , Stem Cells/metabolism
15.
Biochim Biophys Acta ; 1822(10): 1600-7, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22750333

ABSTRACT

Since aberrant wound healing and chronic inflammation can promote malignant transformation, we determined whether dietary bioactive fish oil (FO)-derived n-3 polyunsaturated fatty acids (n-3 PUFA) modulate stem cell kinetics in a colitis-wounding model. Lgr5-LacZ and Lgr5-EGFP-IRES-creER(T2) mice were fed diets enriched with n-3 PUFA vs n-6 PUFA (control) and exposed to dextran sodium sulfate (DSS) for 5days in order to induce crypt damage and colitis throughout the colon. Stem cell number, cell proliferation, apoptosis, expression of stem cell (Lgr5, Sox9, Bmi1, Hopx, mTert, Ascl2, and DCAMKL-1) and inflammation (STAT3) markers were quantified. DSS treatment resulted in the ablation of Lgr5(+) stem cells in the distal colon, concurrent with the loss of distal crypt structure and proliferating cells. Lgr5, Ascl2 and Hopx mRNA expression levels were decreased in damaged colonic mucosa. Lgr5(+) stem cells reappeared at day 5 of DSS recovery, with normal levels attained by day 6 of recovery. There was no effect of diet on the recovery of stem cells. FO fed animals exhibited higher levels of phospho-STAT3 at all time points, consistent with a higher wounding by DSS in FO feeding. n-3 PUFA-fed mice exhibited a reduction in stem cell associated factors, Ascl2, Axin2 and EphB3. These results indicate that rapidly cycling Lgr5(+) stem cells residing at position 1 in the colon epithelium are highly susceptible to DSS-induced damage and that dietary cues can impact stem cell regulatory networks.


Subject(s)
Colon/physiology , Regeneration/physiology , Stem Cells/physiology , Wound Healing/physiology , Animals , Apoptosis/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Colitis/chemically induced , Colitis/genetics , Colitis/metabolism , Colitis/pathology , Colon/metabolism , Colon/pathology , Dextran Sulfate , Diet , Fatty Acids, Omega-3/metabolism , Fish Oils/metabolism , Gene Expression/genetics , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Regeneration/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Stem Cells/metabolism , Stem Cells/pathology , Wound Healing/genetics
16.
Front Genet ; 3: 305, 2012.
Article in English | MEDLINE | ID: mdl-23293655

ABSTRACT

A plethora of studies have described the disruption of key cellular regulatory mechanisms involving non-coding RNAs, specifically microRNAs (miRNA) from the let-7 family, the miR-17 family, miR-21, miR-143, and the miR-200 family, which contribute to aberrant signaling and tumor formation. Certain environmental factors, such as bioactive dietary agents, e.g., folate, curcumin, polyunsaturated fatty acids, are also thought to impact the progression and severity of cancer. In terms of the chemoprotective mechanisms of action, these bioactive dietary agents appear to act, in part, by modulating tissue levels of miR-16, miR-17 family, miR-26b, miR-106b, and miR-200 family miRNAs and their target genes. However, the mechanisms of nutrient action are not yet fully understood. Therefore, additional characterization of the putative underlying mechanisms is needed to further our understanding of the biology, early diagnosis, prevention, and the treatment of cancer. For the purpose of elucidating the epigenetic landscape of cancer, this review will summarize the key findings from recent studies detailing the effect of bioactive dietary agents on miRNA regulation in cancer.

17.
Physiol Genomics ; 43(10): 640-54, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21406606

ABSTRACT

We have recently demonstrated that nutritional bioactives (fish oil and pectin) modulate microRNA molecular switches in the colon. Since integrated analysis of microRNA and mRNA expression at an early stage of colon cancer development is lacking, in this study, four computational approaches were utilized to test the hypothesis that microRNAs and their posttranscriptionally regulated mRNA targets, i.e., both total mRNAs and actively translated mRNA transcripts, are differentially modulated by carcinogen and diet treatment. Sprague-Dawley rats were fed diets containing corn oil ± fish oil with pectin ± cellulose and injected with azoxymethane or saline (control). Colonic mucosa was assayed at an early time of cancer progression, and global gene set enrichment analysis was used to obtain those microRNAs significantly enriched by the change in expression of their putative target genes. In addition, cumulative distribution function plots and functional network analyses were used to evaluate the impact of diet and carcinogen combination on mRNA levels induced via microRNA alterations. Finally, linear discriminant analysis was used to identify the best single-, two-, and three-microRNA combinations for classifying dietary effects and colon tumor development. We demonstrate that polysomal profiling is tightly related to microRNA changes when compared with total mRNA profiling. In addition, diet and carcinogen exposure modulated a number of microRNAs (miR-16, miR-19b, miR-21, miR26b, miR27b, miR-93, and miR-203) linked to canonical oncogenic signaling pathways. Complementary gene expression analyses showed that oncogenic PTK2B, PDE4B, and TCF4 were suppressed by the chemoprotective diet at both the mRNA and protein levels.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/prevention & control , Colonic Neoplasms/genetics , Colonic Neoplasms/prevention & control , Diet , MicroRNAs/genetics , RNA, Messenger/genetics , Adenocarcinoma/diet therapy , Adenocarcinoma/metabolism , Animals , Chemoprevention/methods , Colonic Neoplasms/diet therapy , Colonic Neoplasms/metabolism , Disease Models, Animal , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Male , MicroRNAs/metabolism , Microarray Analysis , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Systems Integration
18.
Carcinogenesis ; 30(12): 2077-84, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19825969

ABSTRACT

We have hypothesized that dietary modulation of intestinal non-coding RNA [microRNA (miRNA)] expression may contribute to the chemoprotective effects of nutritional bioactives (fish oil and pectin). To fully understand the effects of these agents on the expression of miRNAs, Sprague-Dawley rats were fed diets containing corn oil or fish oil with pectin or cellulose and injected with azoxymethane (AOM, a colon-specific carcinogen) or saline (control). Real-time polymerase chain reaction using miRNA-specific primers and Taq Man probes was carried out to quantify effects on miRNA expression in colonic mucosa. From 368 mature miRNAs assayed, at an early stage of cancer progression (10 week post AOM injection), let-7d, miR-15b, miR-107, miR-191 and miR-324-5p were significantly (P < 0.05) affected by diet x carcinogen interactions. Overall, fish oil fed animals exhibited the smallest number of differentially expressed miRNAs (AOM versus saline treatment). With respect to the tumor stage (34 week post AOM injection), 46 miRNAs were dysregulated in adenocarcinomas compared with normal mucosa from saline-injected animals. Of the 27 miRNAs expressed at higher (P < 0.05) levels in tumors, miR-34a, 132, 223 and 224 were overexpressed at >10-fold. In contrast, the expression levels of miR-192, 194, 215 and 375 were dramatically reduced (< or = 0.32-fold) in adenocarcinomas. These results demonstrate for the first time the utility of the rat AOM model and the novel role of fish oil in protecting the colon from carcinogen-induced miRNA dysregulation.


Subject(s)
Carcinogens , Colon/metabolism , Fatty Acids, Unsaturated/metabolism , MicroRNAs/metabolism , Adenocarcinoma/chemically induced , Animals , Azoxymethane/chemistry , Colonic Neoplasms/chemically induced , Epigenesis, Genetic , Fish Oils , Gene Expression Profiling , Male , Pectins/chemistry , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...