Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35407841

ABSTRACT

The consumption of waste materials in the construction sector is a sustainable approach that helps in reducing the environmental pollution and decreases the construction cost. The present research work emphasizes the mechanical properties of bituminous concrete mix prepared with crumb rubber (CR) and waste sugarcane bagasse ash (SCBA). For the preparation of bituminous concrete mix specimens with CR and SCBA, the effective bitumen content was determined using the Marshall Mix design method. A total of 15 bituminous concrete mix specimens with 4%, 4.5%, 5%, 5.5% and 6% of bitumen content were prepared, and the effective bitumen content turned out to be 4.7%. The effect of five different CR samples of 2%, 4%, 6%, 8% and 10% by weight of total mix and SCBA samples of 25%, 50%, 75% and 100% by weight of filler were investigated on the performance of bituminous concrete. A total of 180 samples with different percentages of CR and SCBA were tested for indirect tensile strength (ITS) and Marshall Stability, and the results were compared with conventional bituminous concrete mix. It was observed that the stability values rose with an increase in CR percentage up to 6%, while the flow values rose as the percentage of SCBA increased in the mix. Maximum ITS results were observed at 4% CR and 25% SCBA replacement levels. However, a decrease in stability and ITS result was observed as the percentages of CR and SCBA increased beyond 4% and 25%, respectively. We concluded that the optimum CR and SCBA content of 4% and 25%, respectively, can be effectively used as a sustainable alternative in bituminous concrete mix.

2.
Materials (Basel) ; 14(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34640055

ABSTRACT

The application of multiphysics models and soft computing techniques is gaining enormous attention in the construction sector due to the development of various types of concrete. In this research, an improved form of supervised machine learning, i.e., multigene expression programming (MEP), has been used to propose models for the compressive strength (fc'), splitting tensile strength (fSTS), and flexural strength (fFS) of sustainable bagasse ash concrete (BAC). The training and testing of the proposed models have been accomplished by developing a reliable and comprehensive database from published literature. Concrete specimens with varying proportions of sugarcane bagasse ash (BA), as a partial replacement of cement, were prepared, and the developed models were validated by utilizing the results obtained from the tested BAC. Different statistical tests evaluated the accurateness of the models, and the results were cross-validated employing a k-fold algorithm. The modeling results achieve correlation coefficient (R) and Nash-Sutcliffe efficiency (NSE) above 0.8 each with relative root mean squared error (RRMSE) and objective function (OF) less than 10 and 0.2, respectively. The MEP model leads in providing reliable mathematical expression for the estimation of fc', fSTS and fFS of BA concrete, which can reduce the experimental workload in assessing the strength properties. The study's findings indicated that MEP-based modeling integrated with experimental testing of BA concrete and further cross-validation is effective in predicting the strength parameters of BA concrete.

3.
Environ Sci Pollut Res Int ; 28(11): 13202-13220, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33179185

ABSTRACT

The rising water pollution from anthropogenic factors motivates further research in developing water quality predicting models. The available models have certain limitations due to limited timespan data and the incapability to provide empirical expressions. This study is devoted to model and derive empirical equations for surface water quality of upper Indus river basin using a 30-year dataset with machine learning techniques and then to determine the most reliable model capable to accurately predict river water quality. Total dissolve solids (TDS) and electrical conductivity (EC) were used as dependent variables, whereas eight parameters were used as independent variables with 70 and 30% data for model training and testing, respectively. Various evaluation criteria, i.e., Nash-Sutcliffe efficiency (NSE), root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE), were used to assess the performance of models. The data is also validated with the help of k-fold cross-validation using R2 and RMSE. The results indicated a strong correlation with NSE and R2 both above 0.85 for all the developed models. Gene expression programming (GEP) outperformed both artificial neural network (ANN) and linear and non-linear regression models for TDS and EC. The sensitivity and parametric analyses revealed that bicarbonate is the most sensitive parameter influencing both TDS and EC models. Two equations were derived and formulated to represent the novel results of GEP model to help authorities in the effective monitoring of river water quality.


Subject(s)
Environmental Monitoring , Water Quality , Gene Expression , Machine Learning , Rivers
4.
R Soc Open Sci ; 7(8): 191957, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32968496

ABSTRACT

The Upper Indus Basin (UIB) is a major source of supplying water to different areas because of snow and glaciers melt and is also enduring the regional impacts of global climate change. The expected changes in temperature, precipitation and snowmelt could be reasons for further escalation of the problem. Therefore, estimation of hydrological processes is critical for UIB. The objectives of this paper were to estimate the impacts of climate change on water resources and future projection for surface water under different climatic scenarios using soil and water assessment tool (SWAT). The methodology includes: (i) development of SWAT model using land cover, soil and meteorological data; (ii) calibration of the model using daily flow data from 1978 to 1993; (iii) model validation for the time 1994-2003; (iv) bias correction of regional climate model (RCM), and (v) utilization of bias-corrected RCM for future assessment under representative concentration pathways RCP4.5 and RCP8.5 for mid (2041-2070) and late century (2071-2100). The results of the study revealed a strong correlation between simulated and observed flow with R 2 and Nash-Sutcliff efficiency (NSE) equal to 0.85 each for daily flow. For validation, R 2 and NSE were found to be 0.84 and 0.80, respectively. Compared to baseline period (1976-2005), the result of RCM showed an increase in temperature ranging from 2.36°C to 3.50°C and 2.92°C to 5.23°C for RCP4.5 and RCP8.5 respectively, till the end of the twenty-first century. Likewise, the increase in annual average precipitation is 2.4% to 2.5% and 6.0% to 4.6% (mid to late century) under RCP4.5 and RCP8.5, respectively. The model simulation results for RCP4.5 showed increase in flow by 19.24% and 16.78% for mid and late century, respectively. For RCP8.5, the increase in flow is 20.13% and 15.86% during mid and late century, respectively. The model was more sensitive towards available moisture and snowmelt parameters. Thus, SWAT model could be used as effective tool for climate change valuation and for sustainable management of water resources in future.

SELECTION OF CITATIONS
SEARCH DETAIL
...